• Title/Summary/Keyword: Thwaites' method

Search Result 2, Processing Time 0.015 seconds

A study on the boundary layer characteristics of TP620 hydrofoil in the steady state (정상상태인 박용 TP620 익형의 경계층 특성 연구)

  • 서봉록;김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.50-56
    • /
    • 1986
  • This report deals with a study on the boundary layer characteristics of TP620 hydrofoil in the steady state by using two dimensional boundary layer theory. On the basis of complex velocity and laminar and turbulent boundary layer theory, the author attempts to know some tendency by evaluating the performance characteristic values of TP620 hydrofoil working in a uniform flow. In deriving characteristic values, he calculates numerically velocity, momentum thickness, skin friction coefficient, shape factor, and displacement thickness on the TP620 hydrofoil working at each attack angle in a uniform flow. Applying this present numerical calculation using Thwaites' and Head's method, the results of boundary layer on the hydrofoil are shown to be influenced by surface velocity and attack angle.

  • PDF

A study for laminar and turbulent boundary layer theory around a Joukowski and NACA-0012 airfoil by CFD (Airfoil 주변에서의 층류 및 난류경계층 이론에 대한 수치해석)

  • Je, Du-Ho;Hwang, Eun-Seong;Lee, Jang-Hyeoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1533-1539
    • /
    • 2013
  • In the present study, we compared the theory with CFD data about the boundary layer thickness, displacement thickness and momentum thickness. According to the freestream velocity, larminar and turbulent is decided and affect to the flow patterns around the airfoil The boundary layer thickness, displacement thickness and momentum thickness affect to the aerodynamic characteristics of the airfoil(e.g. lift, drag and pitching moment). The separation point is affected by varying angle of attack. In the present study, we used the Joukowski airfoil(c=1), and NACA0012 airfoil was used at CFD. The chord Reynolds number is $Re_c$=3,000, 700,000, respectively and the freestream velocity is 0.045, 10 m/s, respectively. In this paper, the data was a good agreement with that of experimental results, so we can analyze the various airfoil models.