• Title/Summary/Keyword: Thruster Plume

Search Result 23, Processing Time 0.023 seconds

Analysis of Plume Impingement Effect of Lunar Lander (지상시험 모델용 달착륙선 플룸 해석을 통한 추력기간의 간섭 효과 분석)

  • Choi, Ji-Yong;Lee, Jae-Won;Kim, Su-Kyum;Han, Cho-Young;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.254-257
    • /
    • 2011
  • Two types of thrusters(Descent Control Thruster (DCT) for reducing landing speed and Attitude Control Thruster (ACT) for attitude control) are mounted on the propulsion system of Ground test model lunar lander. In this paper, plume impingement effect and ground effect between DCT Modules are analyzed using numerical method when the impact occurred close to the ground.

  • PDF

Analysis of Monopropellant Thruster Plume Effects by DSMC (DSMC를 이용한 단일추진제 추력기 플룸의 영향 해석)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;You, Jae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.179-182
    • /
    • 2007
  • The new KOMPSAT in preliminary design phase will utilize 4.45 N monopropellant thrusters for attitude and orbit control. In this paper, a numerical plume analysis is performed to verify the effects of thruster plume on the satellite with a 3-D satellite base region model by DSMC. As a result, plume behaviors such as overall plume temperature, total density and thermal radiation to solar array are estimated.

  • PDF

Study on the Thruster Plume Behaviors using Preconditioned Scheme and DSMC Method (예조건화 기법과 직접모사법을 이용한 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Kim, Su-Kyum;Yu, Myoung-Jong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.144-153
    • /
    • 2009
  • To study the plume effects in the rarefied region, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the rarefied region numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the rarefied flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow region, etc, can be investigated.

  • PDF

Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area (희박영역에서 예조건화 연속체기법과 직접모사법을 이용한 소형 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Lee, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.906-915
    • /
    • 2009
  • To study the plume effects in the vacuum area, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the vacuum area numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the vacuum flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow area, etc, can be investigated.

Numerical Simulation of an Electric Thruster Plume Behavior Using the PIC-DSMC Method (PIC-DSMC 방법을 이용한 전기추력기 플룸 해석)

  • Kang, Sang Hun;Jun, Eunji
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • To develop technologies for the stable operation of electric propulsion systems, the exhaust plume behavior of electric thrusters was studied using PIC-DSMC(particle-in-cell and direct simulation Monte Carlo). For the numerical analysis, the Simple Electron Fluid Model using Boltzmann relation was employed, and the charge and momentum exchanges due to atom-ion collisions were considered. The results of this study agreed with the plasma potentials measured experimentally. Near the thruster exit, active collisions among particles and charge exchanges created slow ions and fast atoms, which were expected to significantly affect the trajectory and velocity of the thruster exhaust plume.

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

A Study on Plume Disturbance Calculation Method of GEO-KOMPSAT-2 Satellite (정지궤도 복합위성 플룸 외란 계산 기법 연구)

  • Kang, Wooyong;Chae, Jongwon;Park, Youngwoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • The attitude control, station keeping and wheel off-loading at GEO-KOMPSAT-2 are realized by thrusters firings. Thrusters 1, 2 and 3 are mounted on the same axis as the solar array, which generates the plume disturbance largely. Therefore the effect of plume disturbance should be analyzed from satellite design phase. In this paper, we described the calculation method of plume disturbance and analyzed the plume disturbance of thruster 1,2 and 3 using GEO-KOMPSAT-2 initial configuration.

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

Dynamic Effects Analysis on a Solar Array Due to Attitude Control Thruster Plume (자세제어 추력기 배기가스에 의한 태양전지판의 동적 영향 분석)

  • Chae, Jongwon;Han, Cho Young;Jun, Hyoung Yoll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.9
    • /
    • pp.799-804
    • /
    • 2015
  • The purpose of this study is to analyse the dynamic disturbances(disturbed forces and disturbed torques) due to attitude control thruster's plume impingement on the solar arrays. To produce database of the dynamic disturbances a sweep analysis was done, in which the two parameters are used; the distance between the thruster and solar arrays and the thruster tilt angle. Based on the database, a third order polynomial approximation is computed to represent the characteristics of the disturbed forces and torques. The final results are the coefficients of the approximation for each solar array angle position. These results as input data are used to optimize the configuration of the attitude control thrusters. This analysis is appled to the two candidate solar arrays for Geo-Kompsat-2 satellite and the results of the disturbed forces and disturbed torques are compared and analysed.

Plume Effects on Satellite Base Region of KOMPSAT-II (추력기플룸과 위성본체와의 상호작용에 관한 연구)

  • 박재현;백승욱;김정수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.43-43
    • /
    • 2002
  • 인공위성은 일반적으로 추력기(thruster)에서 플룸(plume)을 거의 진공에 가까운 외부환경으로 사출하여 자세를 제어한다. 이 때, 사출되는 플룸에 의해 위성체의 고도에 영향을 줄 수 있는 교란추력/교란토크, 열하중(thermol loading), 정밀계측장비에 영향을 주는 오염(contamination) 등, 여러 부정적인 효과들이 야기될 수 있으며, 이들 효과들은 결론적으로 위성체의 수명을 단축하기 때문에 이들에 대한 정확한 예측은 위성체 설계단계에서 매우 중요하다.

  • PDF