• 제목/요약/키워드: Thrust-ring-pump

검색결과 6건 처리시간 0.026초

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

75톤급 로켓엔진용 연료펌프의 축추력 측정 (Axial Thrust Measurement of Fuel Pump for 75-ton Class Rocket Engine)

  • 김대진;홍순삼;최창호;김진한
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.8-13
    • /
    • 2010
  • 축추력의 효과적인 제어는 터보펌프의 작동 안정성을 확보하는 데 중요한 기술 중 하나이다. 현재 개발 중인 75톤급 로켓엔진용 연료펌프에 대한 축추력 측정을 상온의 물을 매질로 하여 실시하였다. 시험 결과, 연료펌프의 축추력은 펌프 베어링의 축방향 하중 조건을 만족하는 것으로 예상되었다. 또한 연료펌프의 축추력은 대체로 유량이 작을수록 커졌다. 그리고 플로팅 링 실과 임펠러 사이의 간극이 바뀌었을 때, 연료펌프의 축방향 하중과 후방 누설 유량이 변화하는 것을 확인하였다.

캐비티 베인이 있는 고속 원심펌프의 축추력 제어 (Axial Thrust Control of High-speed Centrifugal Pump with Cavity Vanes)

  • 김대진;최창호;노준구;김진한
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.46-50
    • /
    • 2012
  • A high-speed centrifugal pump requires more attention to the control of its axial thrust due to the high discharge pressure than a conventional industrial pump. Vanes employed toward the rear cavity of the impeller can be an effective device to control the axial thrust of the pump. The vanes disturb circumferential flow of the cavity and it can modify the axial force acting on the impeller. In this paper, three types of vanes are installed in the high-speed centrifugal pump for liquid rocket engines and the thrust of the pump is measured with an additional thrust measurement unit. According to the results, shapes of cavity vanes have effects on the axial thrust of the pump. As the height of vanes increases, the outlet pressure of the rear floating ring seal decreases which results in a decrease of the thrust. On the other hand, head of the pump is almost same regardless of cavity vanes. Also, the pressure drop of the bypass pipeline increases when vanes are removed.

회전차의 축방향 변위가 펌프의 성능과 축추력에 미치는 영향 (The effect of axial displacement of the impeller on the performance and axial thrust of a pump)

  • 홍순삼;강신형
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.562-569
    • /
    • 1997
  • The axial position of an impeller is misaligned in the process of manufacturing and assembling. For a single suction centrifugal pump with balancing holes, the effect of axial displacement of impeller on the performance, leakage loss and axial thrust acting on the impeller is experimentally investigated. The axial displacement decreases the pump efficiency, increases the leakage through the clearance between wearing ring and impeller, and affects the characteristics of axial thrust.

9.5톤급 액체추진엔진용 터보펌프 시스템의 로터다이나믹 해석 (The Rotordynamic Analysis of TurboPump System for 9.5ton thrust Liquid Rocket Engine)

  • 양홍준;김경호;김영수;우유철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제17회 학술발표회 논문초록집
    • /
    • pp.15-18
    • /
    • 2001
  • In this paper, we investigate the rotordynamic characteristics of turbopump system for 9.5ton thrust liquid rocket engine. A finite element method is used to analyze the vibratior characteristics of a rotor-bearing system. The turbopump rotating system is modeled by shaft with sixty elements, nine rigid disks, four ball bearings and four floating ring seals. The calculation results show that the margin of 1st critical speed is increased from 12% to 68% by use of elastic damping ring. In addition, the margin of the 2nd critical speed near the operating speed is increased from 30% to 63% by the stiffness and damping of floating ring seals.

  • PDF

액체로켓 터보펌프의 임계 속도 해석 (Critical Speed Analysis of the Liquid Rocket Turbopump)

  • 전성민;곽현덕;윤석환;김진한
    • 한국항공우주학회지
    • /
    • 제33권6호
    • /
    • pp.92-99
    • /
    • 2005
  • 30톤 추력급 터보펌프에 대한 회전체 동역학 해석이 수행되었다. 연료펌프와 터빈에 의해서 유발되는 공력 및 수력 하중이 볼 베어링과 비접촉식 실의 강성 및 감쇠 예측을 위하여 고려되었다. 임계 속도의 분리 안전 여유와 회전체 부품의 팁 변위를 예측하기 위하여 임계 속도 해석과 질량 불평형 응답 해석이 수행되었다. 정확한 해석을 위하여 3차원 유한요소법을 사용하였고 1차원 전달함수 행렬법의 결과와 비교하였다. 탄성 링을 추가적으로 장착함으로써 베어링 지지부의 강성 제어를 통하여 충분한 공진 분리 여유의 확보가 가능함을 확인하였다.