• Title/Summary/Keyword: Thrust test

Search Result 617, Processing Time 0.026 seconds

Combustion Test Results of 1/2.5-scale Thrust Chamber for 75tonf-Class Liquid Rocket Engine (75톤급 액체로켓엔진 1/2.5-scale 연소기 연소시험 결과)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.69-73
    • /
    • 2009
  • Combustion test results of 1/2.5-scale thrust chamber for 75tonf-class liquid rocket engine were described. The thrust chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion ratio of 12. The combustion tests were conducted to verify the combustion performance, the regenerative cooling performance and the durability of thrust chamber at design point condition, and then were performed to confirm the operation and the combustion performance at low combustion pressure condition. All the tests had been successfully executed without the damage of the hardware. These test results present a possibility of hot firing test at low combustion pressure condition, and can be used as fundamental data to predict the combustion performance at design point condition for 75 tonf thrust chamber.

  • PDF

Axial Thrust Measurement of Fuel Pump for 75-ton Class Rocket Engine (75톤급 로켓엔진용 연료펌프의 축추력 측정)

  • Kim, Dae-Jin;Hong, Soon-Sam;Choi, Chang-Ho;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.8-13
    • /
    • 2010
  • An effective control of the axial thrust of a turbopump is one of the critical issues for obtaining its operational stability. Axial thrusts of the fuel pump for the 75-ton class rocket engine under development were measured with water as a test propellant at a room temperature. According to the test results, the axial thrust of the fuel pump seemed to satisfy the axial force condition of its bearing. Also, the thrust was increased as a whole when the flowrate of the pump was decreased. Furthermore it was found that the thrust and the leakage flowate were modified when the gaps between the floating ring seals and the impeller were changed.

Low Speed Thrust Characteristics of a Modified Sonic Arc Airfoil Rotor through Spin Test Measurement

  • Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.317-322
    • /
    • 2012
  • The low speed aerodynamic characteristics for a modified sonic arc airfoil which is designed by using the nose shape function of sonic arc, the shape function of NACA four-digit wing sections, and Maple are experimentally investigated. The small rotor blades of a modified sonic arc and NACA0012 airfoil are precisely fabricated with a commercially available light aluminum(Al 6061-T6) and are spin tested over a low speed range (3000rpm-5000rpm). In a consuming power comparison, the consuming powers of NACA0012 are higher than that of modified sonic arcs at each pitch angle. The measured rotor thrust for each pitch angle is used to estimate the rotor thrust coefficient according to momentum theory in the hover state. The value of thrust coefficients for both two airfoils at each pitch angle show almost constant values over the low Mach number range. However, the rotor thrust coefficient of NACA0012 is higher than that of the modified sonic arc at each pitch angle. In conclusion, the aerodynamic performance of NACA0012 is better than that of modified sonic arcs in the low speed regime. This test model will provide a convenient platform for improving the aerodynamic performance of small scale airfoils and for performing design optimization studies.

Consideration of locked-in stresses during backfill preparation

  • Gezgin, Ahmet Talha;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.247-258
    • /
    • 2019
  • Soil strength and failure surface geometry directly influence magnitudes of passive earth thrust acting on geotechnical retaining structures. Accordingly, it is expected that as long as the shape of the failure surface geometry and strength parameters of the backfill are known, magnitudes of computed passive earth thrusts should be highly accurate. Building on this premise, this study adopts conventional method of slices for calculating passive earth thrust and combines it with equations for estimating failure surface geometries based on in-situ stress state and density. Accuracy of the proposed method is checked using the results obtained from small-scale physical retaining wall model tests. In these model tests, backfill was prepared using either air pluviation or compaction and different backfill relative densities were used in each test. When the calculated passive earth thrust magnitudes were compared with the measured values, it was noticed that the results were highly compatible for the tests with pluviated backfills. On the other hand, calculated thrust magnitudes significantly underestimated the measured thrust magnitudes for those tests with compacted backfills. Based on this observation, a new approach for the calculation of passive earth pressures is developed. The proposed approach calculates the magnitude and considers the influence of locked-in stresses that are the by-products of the backfill preparation method in the computation of lateral earth forces. Finally, recommendations are given for any geotechnical application involving the compaction of granular bodies that are equally applicable to physical modelling studies and field construction problems.

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

Development of Lunar Llander Thruster for Ground Test (달 착륙선 지상시험용 추력기 개발)

  • Lee, Jong-Lyul;Kim, In-Tae;Kim, Su-Kyum;Han, Cho-Young;Yu, Myoung-Jong;Kim, Ki-Ro;Byun, Do-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.135-138
    • /
    • 2011
  • As a basic research for the development of Korean lunar lander, propulsion system development for ground test is in progress. Thrust for descent is 200 N class. Design target is 220 N in vacuum thrust at 100 g/s flow rate, 200 psi chamber pressure. For ground test, thrust measurement system using LM guide was developed and test was performed. The result shows 160 N thrust in atmosphere condition at 210 psi chamber pressure.

  • PDF

A Correlation between the Pressure Oscillation of Combustion Chamber and Thrust Response in a 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 연소실 압력진동 강도와 추력 응답특성의 상관관계)

  • Jung, Hun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • A ground hot-firing test(HFT) was accomplished to draw a correlation between the pressure oscillation intensity of combustion chamber and thrust response characteristics in a 70 N-class hydrazine thruster which has been developed recently. Monopropellant grade hydrazine was adopted as a propellant for the HFT, and combustion-chamber characteristic length, propellant injection pressure were applied as test parameters. It was confirmed that the decrease of thrust-chamber diameter and injection pressure augmented the pressure oscillation of stagnation chamber in the test condition specified, and the oscillation hampered the pulse response performance of test models.

Design of Free-Forging Tools for Flange part of Marine Engine Thrust Shaft (박음 쓰러스트 샤프트의 플랜지 부위 자유 단조 툴 설계)

  • Kwon, I.K.;Kim, I.H.;Song, M.C.;Park, Y.G.;Park, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.37-41
    • /
    • 2007
  • The purpose of this study is to design the free forging tool for the high accuracy of the thrust shaft in marine engine. In order to do it, the principal factor controlling the uprightness of the flange part and the excessive margin and folding in middle part of thrust shaft after forging process was identified using FEA. Based on the results, the optimum shape of free forging tool and working method were proposed and verified through the mock-up and the actual product test.

  • PDF

Thrust - Performance Test of Ethylene-Oxygen Single-Tube Pulse Detonation Rocket

  • Hirano, Masao;Kasahara, Jiro;Matsuo, Akiko;Endo, Takuma;Murakami, Masahide
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.205-210
    • /
    • 2004
  • The pulse detonation engine (PDE) has recently expected as a new aerospace propulsion system. The PDE system has high thermal efficiency because of its constant-volume combustion and its simple tube structure. We measured thrust of single-tube pulse detonation rocket (PDR) by two methods using the PDR-Engineering Model (full scale model) for ground testing. The first involved measuring the displacement of the PDR-EM by laser displacement meter, and the second involved measuring the time-averaged thrust by combining a load cell and a spring-damper system. From these two measurements, we obtained 130.1 N of time-averaged thrust, which corresponds to 321.2 sec of effective specific impulse (ISP). As well, we measured the heat flux in the wall of PDE tubes. The heat flux was approximately 400 ㎾/$m^2$. We constructed the PDR-Flight Mode] (PDR-FM). In the vertical flight test in a laboratory, the PDR-FM was flying and keeping its altitude almost constant during 0.3 sec.

  • PDF

Combustion Stability Rating Test of Liquid Rocket Engine Thrust Chamber (액체로켓엔진 연소기 연소안정성 평가시험)

  • Ahn, Kyubok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • As a evaluation method of combustion stability in a liquid rocket engine thrust chamber, external disturbance devices are used. In the paper, the study on pulse-gun ignition tests for a combustion stability rating test of a thrust chamber was performed. Charging volume of pulse-guns was determined by confirming the intensities of the pressure waves from the ignition tests in the cold-flow conditions. While using same injector head, combustion instabilities were not encountered during 14 hot-firing tests without pulse-guns but combustion instabilities were triggered by pulse-gun ignition during 2 hot-firing tests. The results showed that the pulse-gun ignition test could be the evaluation method and could reduce the hot-firing test number for the stability rating of a thrust chamber.