• Title/Summary/Keyword: Thrust surface

Search Result 250, Processing Time 0.03 seconds

An Analysis of Mixed Lubrication in Thrust Bearing by Surface Topography (Surface Topography를 이 용한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.136-145
    • /
    • 1999
  • This paper describes the surface roughness effect in parallel thrust bearing. In mixed lubrication, some contacts will take place between asperities, and partial lubrication will occur. An average Reynolds Equation is utilized to determine effects of surface roughness on partially lubricated contacts. By using an autocorrelation function for the surface profile, surface model is generated numerically Although the two surfaces are parallel in thrust bearing separated by thin film, the pressure peak is formed due to asperites. By means of surface profile parameters, it is shown that which surface is optimal for the parallel thrust bearing.

  • PDF

Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing (표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.

Mixed Lubrication Analysis of Parallel Thrust Bearing by Surface Topography (Surface Topography를 이용한 평행 스러스트 베어링의 혼합윤활 해석)

  • 이동길;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.106-113
    • /
    • 2000
  • Effects of surface roughness on bearing performances are investigated numerically in this study, especially for the parallel thrust bearing. Although mating surfaces are parallel and separated by thin fluid film, the pressure distribution is formed due to asperities. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation is applied to predict the effects of surface roughness between hydrodynamic and mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness. The correlation length is proposed to get the minimum load for the parallel thrust bearing for various sliding conditions.

Operating Performance Limitations of Tilting Pad Thrust Bearings Due to Misalignment (정렬불량에 따른 틸팅 패드 스러스트 베어링의 운전 성능 한계 검토)

  • Song, AeHee;Choi, SeongPil;Kim, SeonJin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.82-87
    • /
    • 2020
  • In thrust bearings, the thrust collar and bearing surface need to be parallel to each other to ensure that all pads share the same load. In rotating machines, the shaft system cannot achieve perfect alignment. Misalignment of the thrust collar results in some pads supporting a higher load than others and excessive loads being placed on some pads. Consequently, high loads and high temperatures may occur in the bearing. Thus, in this study, we aim to analytically evaluate the performance of a misaligned non-equalizing direct lubricated tilting pad thrust bearing. We define the oil film thickness of the misaligned thrust bearing using the Byrant angle. Additionally, we calculate the pressure distribution and temperature distribution of the thrust bearing using the generalized Reynolds equation and energy equation. The design limit of the thrust bearing is defined by the load and temperature. Therefore, we evaluate the allowable misalignment angle as the limit of the maximum load and temperature. The analysis results demonstrate that an increase in the speed and load corresponds to a smaller allowable misalignment angle. However, as this is not the same for all thrust bearings, evaluating the allowable misalignment angle at each thrust bearing is essential.

A Study on the Precision of a Machined Surface in Thrust Internal Grinding (스러스트 내면 연삭가공의 가공면 정도에 관한 연구)

  • Choi, Hwan;Seo, Chang-Yeon;Seo, Young-Il;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.73-79
    • /
    • 2016
  • In this paper, the grinding characteristics in thrust internal grinding have been studied using vitreous CBN wheels with a machining center. Grinding experiments have been performed according to grinding conditions such as wheel feed speed, cut depth, workpiece speed, rate of grinding width and number of grinding passes. The machining error, shape of machined surfaces, grinding force, and surface roughness have been investigated though these experiments. Based on the experimental results, the grinding characteristics on the machined surface in the internal thrust grinding are discussed.

Consideration of locked-in stresses during backfill preparation

  • Gezgin, Ahmet Talha;Cinicioglu, Ozer
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.247-258
    • /
    • 2019
  • Soil strength and failure surface geometry directly influence magnitudes of passive earth thrust acting on geotechnical retaining structures. Accordingly, it is expected that as long as the shape of the failure surface geometry and strength parameters of the backfill are known, magnitudes of computed passive earth thrusts should be highly accurate. Building on this premise, this study adopts conventional method of slices for calculating passive earth thrust and combines it with equations for estimating failure surface geometries based on in-situ stress state and density. Accuracy of the proposed method is checked using the results obtained from small-scale physical retaining wall model tests. In these model tests, backfill was prepared using either air pluviation or compaction and different backfill relative densities were used in each test. When the calculated passive earth thrust magnitudes were compared with the measured values, it was noticed that the results were highly compatible for the tests with pluviated backfills. On the other hand, calculated thrust magnitudes significantly underestimated the measured thrust magnitudes for those tests with compacted backfills. Based on this observation, a new approach for the calculation of passive earth pressures is developed. The proposed approach calculates the magnitude and considers the influence of locked-in stresses that are the by-products of the backfill preparation method in the computation of lateral earth forces. Finally, recommendations are given for any geotechnical application involving the compaction of granular bodies that are equally applicable to physical modelling studies and field construction problems.

An Experimental Study on Ram Pressure and THD Performance of Pivoted Pad Thrust Bearing (피봇식 주력베어링의 선단압력과 THD성능에 관한 실험적 연구)

  • 박홍규;김경웅
    • Tribology and Lubricants
    • /
    • v.2 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • Effects of the ram-pressure on the THD-performance of pivoted pad thrust bearings are investigated experimentally. A sector-shaped tilting pad thrust bearing and a rotating disk are used. Temperature distribution on the disk surface as well as on the pad surface, distribution of the pressure generated within the fluid film, and the film thickness are measured continuously in the circumferential direction after thermal equilibrium is established. The ram-pressure is proportional to the mean pressure of oil film and to the rotational speed of the disk and affects the maximum pressure and the pressure distribution. The temperature rise on the mating surface of the disc and the pad, contacting with the oil film, is proportional to to the bearing load and the disk speed. The ram-pressure and the temperature rise on the disk surface are dominant factors that affect the THD-performance of pivoted pad thrust bearings.

A Study of Thrust Maximization Using Analytical Method Considering Slot Effect in Pemanent Magnet Linear Synchronous Motor (슬롯효과를 고려한 해석적인 방법에 의한 PMLSM의 출력 최대화에 관한 연구)

  • Lee Dong-Yeup;Kim Duk-Hyun;Kim Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.7
    • /
    • pp.323-328
    • /
    • 2005
  • This paper is proposed maximum thrust design of slotted permanent magnet linear synchronous motor(PMLSM) using surface harmonic method(SHM) considering slot effect. The genetic a1gorithm is used for optimization. The functional are selected the maximum thrust and the minimum detent force. This time. design parameters are set as permanent magnet(PM) width. PM height and slot width. Thrust is increased from 272[N] to 295[N] and detent force is decreased from 5[N] to 2.43[N] greatly in optimum design. Therefore, thrust ripple isn't generating almost. Also, the results of 2D EMC considering slot-effect are compared with ones of experimental and finite element analysis..

Optimal Geometric Design of Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 리니어모터의 형상최적설계)

  • Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1262-1269
    • /
    • 2005
  • Thrust of linear motor is one of the important factor to specify motor performance. Maximum thrust can be obtained by increasing the current in conductor and is relative to the sizes of conductor and magnet. But, the current and the size of conductor have an effect on temperature of linear motor. Therefore, it is practically important to find design results that can effectively maximize the thrust of linear motor within limited range of temperature. Finite element analysis was applied to calculate thrust and the temperature of the conductor was calculated by the thermal resistance. The diameter of copper wire among design variables has discrete value and number of turns must be integer. Considering these facts, special techinque for optimum design is presented. To reduce excessive computation time of thrust in optimization, the design variables was redefined by analysis of variance and second order regression model for thrust was determined by response surface metheodology. As a result, it is shown that the proposed method has an advantage in optimum design of linear motor.