• Title/Summary/Keyword: Thrust coefficient

Search Result 168, Processing Time 0.029 seconds

Analysis of the Thrust Augmentation in the Canister with Baseplate Orifices (오리피스 형상에 따른 발사관 내 부가추력 특성 연구)

  • Yoon, Jin-Young;Lim, Beom-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1067-1072
    • /
    • 2011
  • If the flow of booster gas which is exhausted to the rear part of a canister is properly restricted in the canister of a hot-launch system, the resultant pressure built up in the canister provides additional force to accelerate the missile to a required launch velocity. These thrust augmentation performances can be controlled through the configuration design of baseplate orifices. In this paper, the simple technique to analyze the thrust augmentation performances of baseplate orifices is suggested and the thrust augmentation characteristics by its various configurations are compared. According to the initial displacement of a missile, the inner pressure of a canister is measured from scaled cold flow tests, and the discharge coefficient of baseplate orifices is calculated. Then the thrust augmentation in a canister is simulated by applying these discharge characteristics to the AMESIM software for launch dynamics.

Performance analysis of hubless rim-driven thruster based on the number of blades: a CFD approach (날개수에 따른 허브리스 림 추진기의 성능 분석 : CFD를 이용한 접근)

  • Hyoung-Ho KIM;Chang-Je LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.80-86
    • /
    • 2024
  • We analyzed the performance of hubless rim propellers based on the number of blades, maintaining a fixed pitch ratio and expanded area ratio, using computational fluid dynamics (CFD). Thrust coefficient, torque coefficient and efficiency according to the number of blades were analyzed. In addition, the pressure distribution on the discharge and suction sides of the blade was analyzed. As the advance ratio increases, the thrust coefficient decreases. The highest thrust was shown when the advance ratio was lowest. For the three, four, five and six-blades, the torque coefficient tended to decrease as the advance ratio increased. In the case of seven and eight-blades, the torque coefficient tended to increase as the advance ratio increased. The maximum efficiency was found when the advance ratio was 0.8. When the three-blade, it showed high efficiency at all advance ratios. A high pressure distribution was observed at the leading edge of the discharge blade, and a low pressure distribution was observed at the trailing edge. Applying a hubless rim-driven thruster with the three-blade can generate higher thrust and increase work efficiency.

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

The stydy on determination method of initial optimal nozzle expansion ratio in pintle solid rocket motor (핀틀 로켓의 초기 최적 노즐 팽창비 결정 방법 연구)

  • Kim, Joung-Keun;Lee, Young-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.744-749
    • /
    • 2011
  • In this study, determination method of initial optimal nozzle expansion in pintle rocket was investigated. The initial optimal initial nozzle expansion was decided by maximizing the mass-averaged thrust coefficient that is calculated from thrust coefficient of minimum and maximum chamber pressure. The determination of initial optimal initial nozzle expansion was equivalent to that of the minimum propellant mass which was required for obtaining the desired mission performance. The highest pressure, thrust turndown ratio and total impulse ratio effected on the initial optimal nozzle expansion. Among them, total impulse ratio had great influence on the initial optimal nozzle expansion.

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System (스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측)

  • Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.43-53
    • /
    • 2022
  • In this study, analysis of the flow characteristics of pintle-controlled nozzle with split-line TVC system and the thrust performance prediction was performed. The numerical computation was verified by comparing the thrust coefficient derived from the analysis results with the experimental data. By applying the same numerical analysis technique, the flow characteristics of nozzle were confirmed according to operating altitude, pintle stroke position and TVC angle with the 1/10 scale. As the TVC angle increased, thrust loss occurred and the tendency of AF was different depending on the position of the pintle stroke. Based on the analysis results, the relation of thrust coefficient was derived by applying the response surface methods. The thrust performance model with a slight difference of 1.2% on average from the analysis result was generated.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressor (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Han-Jong;Cho, Yong-Il;Cho, Sang-Won;Lee, Jae-Keun;Park, Min-Chan;Kim, Dae-Jin;Lee, Kwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.121-125
    • /
    • 2012
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the thrust bearing experimental apparatus for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and rotating speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing rotating speed and normal force. The friction coefficient of carbon nano-oil is 0.023, while that of pure oil is 0.03 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

Performance Evaluation of Nano-Lubricants at Thrust Slide-Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Ahn, Young-Chull;Lee, Jung-Eun;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Kim, Dong-Han;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with n mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear Lising nano-oil is evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oilenhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

Low Speed Thrust Characteristics of a Modified Sonic Arc Airfoil Rotor through Spin Test Measurement

  • Lee, Jang-Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.317-322
    • /
    • 2012
  • The low speed aerodynamic characteristics for a modified sonic arc airfoil which is designed by using the nose shape function of sonic arc, the shape function of NACA four-digit wing sections, and Maple are experimentally investigated. The small rotor blades of a modified sonic arc and NACA0012 airfoil are precisely fabricated with a commercially available light aluminum(Al 6061-T6) and are spin tested over a low speed range (3000rpm-5000rpm). In a consuming power comparison, the consuming powers of NACA0012 are higher than that of modified sonic arcs at each pitch angle. The measured rotor thrust for each pitch angle is used to estimate the rotor thrust coefficient according to momentum theory in the hover state. The value of thrust coefficients for both two airfoils at each pitch angle show almost constant values over the low Mach number range. However, the rotor thrust coefficient of NACA0012 is higher than that of the modified sonic arc at each pitch angle. In conclusion, the aerodynamic performance of NACA0012 is better than that of modified sonic arcs in the low speed regime. This test model will provide a convenient platform for improving the aerodynamic performance of small scale airfoils and for performing design optimization studies.

Performance Improvement of Weis-Fogh Type Ship's Propulsion Mechanism Using Spring Type Elastic Wing

  • Ro, Ki-Deok;Cheon, Jung-Hui;Kim, Won-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.52-61
    • /
    • 2009
  • This experiment was conducted in attempt of improving hydrodynamic efficiency of the propulsion mechanism by installing a spring to the wing so that the opening angle of the wing in one stroke can be changed automatically, compared to the existing method of fixed maximum opening angle in Weis-Fogh type ship propulsion mechanism. Average thrust coefficient was almost fixed with all velocity ratio with the prototype, but with the spring type, thrust coefficient increased sharply as velocity ratio increased. Average propulsive efficiency was larger with bigger opening angle in the prototype, but in the spring type, the one with smaller spring coefficient had larger value. In the range over 1.0 in velocity ratio where big thrust can be generated, spring type had more than twice of propulsive efficiency increase compared to the prototype.