• Title/Summary/Keyword: Thrust chamber

Search Result 271, Processing Time 0.023 seconds

Modeling and Simulation of CCTF Fuel Supply System (연소기연소시험설비(CCTF) 연료공급시스템 해석)

  • Chung, Yong-Gahp;Lee, Kwang-Jin;Cho, Nam-Kyung;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.892-897
    • /
    • 2011
  • The propulsion system of space launch vehicle generates thrust by supplying oxidizer and fuel to combustion chamber. KSLV-II 2nd stage engine, currently under development by KARI, is to use liquid oxygen as a oxidizer and JET-A1 as a fuel. The 2nd stage pump-fed engine is mainly composed of combustion chamber, turbo-pump and engine supply system. To develop liquid propulsion engine, the development of combustion chamber must be preceded. For performance validation of the combustion chamber, the designed and manufactured combustion chamber should be tested in combustion chamber test facility(CCTF). The detailed design for the planned CCTF in Naro Space Center was conducted. The fuel supply system modeling using AMESim was performed based on the results of the detailed design, and the fuel supply characteristics was analyzed in this paper.

  • PDF

Combustion Performance of a Full-scale Liquid Rocket Thrust Chamber Using Water as Coolant (실물형 액체로켓엔진 연소기 물냉각 연소시험 성능결과)

  • Han Yeoung-Min;Kim Jong-Gyu;Moon Il-Yoon;Lee Kwang-Jin;Seo Seong-Hyeon;Choi Hwan-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.187-192
    • /
    • 2006
  • The combustion performance tests of a 30 tonf-class full-scale combustion chamber performed with water as a coolant were described. The combustion chamber has chamber pressure of 53bara and propellant flow mass rate of 90kg/s. Since it was first firing test for 30tonf-class combustion chamber using channel cooling, water coolant mass flow .ate of 35kg/s and 18kg/s were performed which correspond to 110% of kerosene design volume flow rate and equivalent cooling performance of kerosene. The test results are described and the results showed that the water cooling performance of this combustion chamber is sufficient and the firing test is feasible using the kerosene as a coolant.

  • PDF

Combustion Performance of a Full-scale Liquid Rocket Thrust Chamber Using Kerosene as Coolant (실물형 액체로켓엔진 연소기 케로신냉각 연소시험 성능결과)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Moon, Il-Yoon;Seo, Seong-Hyeon;Choi, Hwan-Seok;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.163-168
    • /
    • 2006
  • The combustion performance tests of a 30 tonf-class full-scale combustion chamber performed with kerosene as a coolant were described. The combustion chamber has chamber pressure of 53bara and propellant flow mass rate of 90kg/s. Since it was first firing test for 30tonf-class combustion chamber using kerosene cooling, kerosene coolant mass flow rate of 32kg/s which correspond to 120% of design mass flow rate were performed. Then, the firing test with kerosene mass flow rate of 25kg/s were successfully performed. The test results are described and the results showed that the kerosene cooling performance of this combustion chamber is sufficient and the firing test with regenerative cooling is feasible.

  • PDF

Thermo-structural Effects of Thermal Barrier Coating on Regenerative Cooling Chamber (열차폐 코팅이 재생냉각 챔버에 미치는 열/구조적인 영향)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.421-425
    • /
    • 2009
  • A study has been performed to investigate the thermo-mechanical effects of thermal barrier coating on liquid rocket regenerative cooling chamber using finite element analysis. Two kinds of thermal barrier coatings were studied on the same loading condition: first, NiCrAlY-$ZrO_2$, coating which is currently applied to the developing combustion chamber and second, Ni-Cr coating which might be applied in the future. Analysis results showed that NiCrAlY-$ZrO_2$ coating has better decreasing effect of temperature than the Ni-Cr coating. As a results, temperature and deformation of the cooling channel in the NiCrAlY-$ZrO_2$ coating were also less than those of the Ni-Cr coating. The Ni-Cr coating has no effect on a structural stability of the outer jacket but the NiCrAlY-$ZrO_2$ coating reduced the effective stress of the outer jacket and enhanced the structural stability of the chamber.

  • PDF

Experiments for Combustion Analysis of Hybrid Motor (하이브리드 모터의 연소해석을 위한 실험연구)

  • 하윤호;장선용;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.262-265
    • /
    • 2003
  • This Study is focused on the instrumenting Hybrid Rocket Motor of ACPL at Konkuk University and researching combustion instability by measuring regression rate versus oxidizer mass flux. In the result of experiment, test fire was moderate and we could acquire data of pressure, thrust, and temperature of combustion chamber. In the future, studying unsteady change of regression rate and pressure characteristic analysis of combustion chamber through hundreds of experiments should be performed. furthermore, researching characteristic velocity by taking a measurement of combustion temperature will be inevitable.

  • PDF

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.

Experimental Investigation of a Regression rate On Hybrid Rocket Engine

  • Park, J. W.;S. Krishnan;Lee, C. W.;M. W. Yoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.524-527
    • /
    • 2004
  • Hybrid rocket had many advantage with compared to solid and liquid rockets. However, the engines have not yet been used in practical rocket systems, due mainly to the disadvantage of hybrid combustion, such as low fuel regression rate. In this study, lab-scale hybrid motor was designed and manufactured. And the methods of regression rate improvement were considered. Test firings with thrusts up to 300 N were conducted with GOX and transparent PMMA. Thrust was calculated with the pressure of the combustion chamber and the regression rate was measured in with variation of oxidizer flow rate. The regression rates showed a strong dependency on GOX mass flux. The frequency analysis technique of the bulk-mode oscillation of motor was applied to a hybrid rocket motor and was based on the principle that this frequency was inversely proportional to the square root of the chamber volume. Several problems and solutions of operating hybrid rocket were presented.

  • PDF

Characteristic Study of Micro-Nozzles according to the Ratios of Nozzle Expansion and Specific heats in low vacuum condition (저진공상태에서 노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성 연구)

  • Kim, Youn-Ho;Jung, Sung-Chul;Huh, Hwan-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.249-252
    • /
    • 2006
  • We conducted the experiment to analyze characteristics of micro-nozzle using different cold gas under two different nozzle expansion ratios in low vacuum condition. We measured thrust and chamber pressure and mass flow rate under low vacuum condition, and then compared them with those in ambient pressure.

  • PDF

Note on Nonlinearity of Combustion Instability (연소 불안정 현상의 비선형적 특성 고찰)

  • 서성현
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Combustion instability phenomena have been observed in various different combustion systems. For each specific combustion system, pressure fluctuations measured during high frequency combustion instability presented many different characteristics. High frequency instability occurring in a lean premixed gas turbine combustor mar be dominantly affected by a nonlinear relation between pressure oscillations and heat release rate fluctuations, and gas dynamics plays a crucial role in determining an amplitude of a limit cycle for a liquid rocket thrust chamber. Combustion instability phenomena manifest their inherent nonlinear characteristics. One is a limit cycle and the other bifurcation described by nonlinear time series analysis.

  • PDF

Performance Analysis of the Pintle Thruster Using 1-D Simulation -I : Steady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석 -I : 정상상태 특성)

  • Kim, Jihong;Noh, Seonghyeon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.304-310
    • /
    • 2015
  • Pintle thrusters use pintle stroke to change nozzle throat area, and this controls thrust. Using MATLAB, one-dimensional simulation has been investigated and the results are compared to those of cold flow tests and computational fluid dynamics for the pintle thruster of Chungnam National University. The prediction based on one-dimensional flow theory shows good agreement with measurements for chamber pressure, but deviates for thrust, partly because of nozzle wall separation. Computational results show that nozzle wall separation occurs at an early stage of nozzle expansion, near the design nozzle throat, for the course of pintle strokes. Empirical thrust prediction incorporates nozzle wall separation, and thus 1-D simulation using empirical thrust prediction showed good results for an early stage of pintle stroke.