• Title/Summary/Keyword: Thrust Load

Search Result 282, Processing Time 0.024 seconds

Development of a Method to Analyze Powering Performance of a Ship and its Application to Optimum Hull Form Design (선박(船舶)의 정수중(靜水中) 추진성능(推進性能) 해석(解析) 및 최적선형설계(最適船型設計)에의 응용(應用))

  • Seung-Il,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.35-48
    • /
    • 1985
  • The present work develops a method of evaluating thrust deduction and wake for different loads of the propeller using the concerted application of the theoretical tools and experimental techniques. It also shows the applicability of the new method to the design of optimum hull form. Firstly, the problem of hull-propeller interaction was analyzed in terms of inviscid as well as viscous components of the thrust deduction and wake. The wavemaking resistance of a hull and propeller were mathematically represented by sources on the hull surface and sink on the propeller plane, respectively. The strength of sink was determined by utilizing the radial distributions of propeller load and nominal wake. The resistance increment due to a propeller and the axial perturbation flow induced by the hull in the propeller plane were calculated. Especially, the inviscid component of the thrust deduction was calculated by subtraction the wavemaking resistance of a bare hull, the wavemaking resistance of a free-running propeller and the augmentation of propeller resistance due to hull action from the wavemaking resistance of the hull with a propeller. The viscous components of the thrust deduction and wake were estimated as functions of propeller load which were established by the propeller load varying test after deduction the calculated inviscid components. Secondly, an analysis method of powering performance was developed based on the potential theory and the propeller load varying test. The hybrid method estimates the thrust deduction, wake and propeller open-water efficiency for different propeller load. This method can be utilized in the analysis of powering performance for the propeller load variation such as the added resistance due to hull surface roughness, the added resistance due to wind, etc. Finally, the hybrid method was applied to the optimum design of hull form. A series of afterbody shapes was obtained by systematically varying the waterplane and section shapes of a parent afterbody without changing the principal dimensions, block coefficient and prismatic coefficient. From the comparison of the predicted results such as wavemaking resistance, thrust deduction, wake and delivered power, an optimum hull form was obtained. The delivered power of the optimized hull form was reduced by 5.7% which was confirmed by model tests. Also the predicted delivered power by the hybrid method shows fairly good agreement with the test result. It is therefore considered that the new analysis method of powering performance can be utilized as a practical tool for the design of optimum hull form as for the analysis of powering performance for the propeller load variation in the preliminary design stage.

  • PDF

Design of a Thrust Stand Using Flexure (플렉셔를 적용한 추력 시험대 설계)

  • Jin, Juneyub;Park, Youngseok;Lee, Changwook;Jeong, Sangseop;Lee, Juhyung;Baek, Cheulwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.205-212
    • /
    • 2021
  • In this study, two types of thrust stand modeling were proposed for the design of a thrust stand using flexure. Type A model generate combined load for tangential (thrust) and axial compressive load (self weight). And type B generate combined load for tangential and axial tensile load. The research was done by comparing the influence of the load between the models through a 1D calculation and computational analysis. The 1D calculated value and the computational analysis value were compared for a total of 10 sections and the results were confirmed to be very similar. In order to prove the validity of the analysis results, the equivalent stress was confirmed from the computational analysis of the flexure, and the production of the Type B model was selected from the evaluation of the yield condition (Von-Mises Yield Criterion).

Comparison of the Performance of Pivoted Pad Thrust Bearings (피봇식 패드 추력베어링의 성능 비교)

  • 김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.337-342
    • /
    • 1998
  • In this paper the lubrication performances of line pivoted pad thrust bearing and point pivoted pad thrust bearing are studied by a numerical analysis. The running characteristic parameters such as nondimensional load carrying capacity nondimensional friciton power loss nondimensional flow rate and film thickness ratios are calculated for various circumferential pivot positions. The results provide a usdful data for the selection of pivot position in a pivoted and thrust bearing.

  • PDF

Structural Analysis of Snap Ring in Thrust Cut-Off System (Thrust Cut-Off 시스템에서의 스냅링 구조해석)

  • 김경희
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.21-21
    • /
    • 2000
  • Thrust Cut-Off 시스템은 로켓 발사체의 분리시의 충격에 의한 비행방향오차 및 비행거리를 감소하고 Pay-Load 부에 추진력을 증가시키고 분리된 추진 기관부의 낙하위치 예측을 용이하게 한다. 이와 같이 중요한 역할을 하게되는 Thrust Cut-Off 시스템에서 스냅링은 핵심적인 역할을 하게 된다. 정상적인 추진체의 작동 시에는 고압의 연소가스를 지탱하고 분리 시에는 쉽게 분리되어 연소가스를 역 분사 시켜야한다.(중략)

  • PDF

A Study of Natural Frequency on Offshore Wind Turbine Structural Change (해상 풍력 발전용 구조물 변화에 따른 고유진동해석)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1016
    • /
    • 2007
  • The purpose of this paper is to investigate the Natural Frequency behavior characteristic of Wind Turbine Tower model, and calculated the stress values of thrust load, wave load, wind load, current load, and gravity load. The offshore Jacket Type Tower which was installed in Vitenam South China Sea is used for the study. Natural frequency and mode shape are calculated with commercial program using the measured vibration. The finite element analysis is performed with commercial F.E.M program(ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.

Comparative study of prediction methods of power increase and propulsive performances in regular head short waves of KVLCC2 using CFD

  • Lee, Cheol-Min;Seo, Jin-Hyeok;Yu, Jin-Won;Choi, Jung-Eun;Lee, Inwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.883-898
    • /
    • 2019
  • This paper employs computational tools to predict power increase (or speed loss) and propulsion performances in waves of KVLCC2. Two-phase unsteady Reynolds averaged Navier-Stokes equations have been solved using finite volume method; and a realizable k-ε model has been applied for the turbulent closure. The free-surface is obtained by solving a VOF equation. Sliding mesh method is applied to simulate the flow around an operating propeller. Towing and self-propulsion computations in calm water are carried out to obtain the towing force, propeller rotating speed, thrust and torque at the self-propulsion point. Towing computations in waves are performed to obtain the added resistance. The regular short head waves of λ/LPP = 0.6 with 4 wave steepness of H/λ = 0.007, 0.017, 0.023 and 0.033 are taken into account. Four methods to predict speed-power relationship in waves are discussed; Taylor expansion, direct powering, load variation, resistance and thrust identity methods. In the load variation method, the revised ITTC-78 method based on the 'thrust identity' is utilized to predict propulsive performances in full scale. The propulsion performances in waves including propeller rotating speed, thrust, torque, thrust deduction and wake fraction, propeller advance coefficient, hull, propeller open water, relative rotative and propulsive efficiencies, and delivered power are investigated.

Analysis of the stress distribution under a driving lugged wheel by photoelastic method (광탄성법(光彈性法)에 의(依)한 러그달린 구동륜하(駆動輪下)의 응력분포(應力分布)에 관(關)한 해석(解析))

  • Kim, Jin Hyun;Choi, Sang In
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.11-17
    • /
    • 1983
  • Stress distribution under a driving lugged wheel was obtained by photoelastic method. The distribution showed two distinct parts, one part is due to sinkage and other due to compression. Results of the study are summarized as follows. 1. The tangential reactions of sinkage as well as compressing parts were directly proportional to tangential load to the driving wheel, that's appeared to be thrust of the driving wheel. The normal reactions of both sinkage and compressing parts were directly proportional to the vertical load to the driving wheel, that's appeared to be resistance against wheel motion. 2. When the tangential load was constant, changing the vertical load did not show any significant thrust variation of the driving wheel. 3. Under the condition of this experiment, the ratio of vertical load to tangential load (T.L/V.L) must be greater than 1.0 in order for the wheel to roll.

  • PDF

A Study of Natural Frequency of Offshore Wind Turbine JACKET (해상 풍력 발전 JACKET의 고유진동수에 관한 연구)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.130-135
    • /
    • 2007
  • The purpose of this paper is that investigates the Natural Frequency behavior characteristic of wind turbine jacket type tower model, and calculated that the stress values of thrust load, wave load, wind load, current loda, gravity load, etc., environment evaluation analysis during static operating wind turbine jacket type tower model, carried out of natural frequency analysis of total load case to stress matrix, frequency calculated that calculated add natural frequency to stiffness matrix for determinant to stress results. The finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape.

An Investigation on Thrust Properties under Wind Shear for an On-Shore 2 MW Wind Turbine (윈드 쉬어에 의한 2MW급 육상용 풍력터빈의 추력 특성 확인)

  • Lim, Chae Wook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.14-18
    • /
    • 2016
  • Multi-MW wind turbines have very large blades over 40~50 m in length. Some factors like wind shear and tower shadow make an effect on asymmetric loads on the blades. Larger asymmetric loads are produced as the length of blade is getting longer. In this paper, a 2 MW on-shore wind turbine is considered and variations of thrust on 3 blades and rotor hub under wind shear are calculated by using a commercial Bladed S/W and dynamic properties of the thrust variations are investigated. It is shown that the amplitude of the asymmetric thrust on each blade under wind shear is getting larger as the wind speed increases, the frequency of the thrust variation on each blade is same as the one of rotor speed, and the frequency of the thrust variation at rotor hub is 3 times as high as the one of rotor speed.