• Title/Summary/Keyword: Thrust Force

Search Result 681, Processing Time 0.026 seconds

A Study on Deduction of Equivalent Circuit Parameters and Verification of Control Algorithm of Thrust Force of a Small-scaled LIM for a Railway Transit (철도차량용 선형유도전동기 축소형 모델의 등가회로 파라미터 도출 및 추진력 제어 알고리즘 검증 연구)

  • Park, Chan-Bae;Mok, Hyung-Soo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1248-1254
    • /
    • 2010
  • Authors conducted a deduction of some parameters using the magnetic equivalent circuit method and a verification study of the thrust force control algorithm of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap of the secondary aluminium plate of a rotary-typed small-scaled LIM. And authors conducted a verification study of the indirect vector control algorithm with constant slip frequency by using the rotary-typed small-scaled LIM tester set on the basis of the calculated LIM parameters. Finally authors accomplished a research on applicability for LIM railway transit.

A study on optimization of duct shape of electric hubless rim-driven propeller (전기구동 림 추진기의 덕트 형상 최적화 연구)

  • Yong-beom PYEON;Jae-Hyun BAE;Hyoung-Ho KIM;Chang-Je LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • This study analyzed the duct characteristics of hubless rim-driven propeller (RDP) used in underwater robots. In the previous study, flow visualization experiments were performed with an advancing ratio of 0.2 to 1. The vortex at the front of the duct increased in strength while maintaining its size as the advancing ratio decreased. Therefore, it is necessary to study the optimization of the duct shape. Conventional propeller thrusters use acceleration/deceleration ducts to increase their efficiency. However, unlike conventional propellers, it is impossible to apply to airfoil acceleration/deceleration ducts due to the RDP structure. In this study, duct wake flow characteristics, thrust force, and efficiency according to the duct shape of RDP were analyzed using numerical analysis techniques. Duct design is limited and six duct shapes were designed. As a result, an optimized duct shape was designed considering duct wake flow characteristics, thrust force, and efficiency. The shape that the outlet width of the RDP was kept constant until the end of the duct showed higher thrust force and efficiency.

EPB-TBM performance prediction using statistical and neural intelligence methods

  • Ghodrat Barzegari;Esmaeil Sedghi;Ata Allah Nadiri
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.197-211
    • /
    • 2024
  • This research studies the effect of geotechnical factors on EPB-TBM performance parameters. The modeling was performed using simple and multivariate linear regression methods, artificial neural networks (ANNs), and Sugeno fuzzy logic (SFL) algorithm. In ANN, 80% of the data were randomly allocated to training and 20% to network testing. Meanwhile, in the SFL algorithm, 75% of the data were used for training and 25% for testing. The coefficient of determination (R2) obtained between the observed and estimated values in this model for the thrust force and cutterhead torque was 0.19 and 0.52, respectively. The results showed that the SFL outperformed the other models in predicting the target parameters. In this method, the R2 obtained between observed and predicted values for thrust force and cutterhead torque is 0.73 and 0.63, respectively. The sensitivity analysis results show that the internal friction angle (φ) and standard penetration number (SPT) have the greatest impact on thrust force. Also, earth pressure and overburden thickness have the highest effect on cutterhead torque.

The Design of End Edge Shape for Reduction of Long-Distance Transportation Stationary Discontinuous Armature PMLSM Thrust Ripple with Distributed Winding (장거리 반송용 전기자 분산배치 분포권 PMLSM의 추력맥동 저감을 위한 단부형상 설계)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1675-1680
    • /
    • 2013
  • Recently, the permanent magnet linear synchronous motor as low noise, high speed and high thrust force transportation system has been proposed but this motor causes an increase of material cost because of its characteristic arranging the armature on the full length of transportation lines when this system is applied to the long distance transportation system. Therefore, we suggested discontinuous arrangement method of the armature to solve this problem. However, Detent force which causes thrust force ripple generating noise, vibration and decline of performance is generated when a mover pass between the armatures. Thus, in this paper, we examined characteristic of detent force to reduce the end edge effect according to the end edge teeth's height and auxiliary teeth and suggested the shape that can the most reduce the detent force.

Experimental Study on Ventilation and Shaft Excitation Force of a Propeller in Partially Submerged Condition (부분 침수 조건에서 작동하는 프로펠러의 공기유입과 축계 기진력에 대한 실험적 연구)

  • Ha, Jeongsoo;Seo, Jeonghwa;Park, Gyukpo;Park, Jongyeol;Rhee, Shin Hyung;Yoo, Jaehoon;Park, Suyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Through a series of bollard pull tests of a propeller in partially submerged condition, thrust, torque, and shaft excitation force of a conventional propeller model were measured using a six-component load cell. By variation of the Weber number and Reynolds number, a consistent towing tank model test condition was derived. The effects of propeller immersion depth on the ventilation behavior and change of force and moment acting onto the propeller shaft were investigated. The decrease in thrust owing to the inception of ventilation was confirmed, and a large degree of dispersion of the thrust and torque coefficients were also observed in the transition region where the blade tip was under the water surface. The shaft excitation force was derived from the force and moment onto the propeller shaft.

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

Demonstration of Stable Vertical Takeoff of an Insect-Mimicking Flapping-Wing System (곤충 모방 날갯짓 비행체의 안정적인 수직 이륙 비행 구현)

  • Phan, Hoang-Vu;Truong, Quang-Tri;Nguyen, Quoc-Viet;Park, Hoon-Cheol;Byun, Do-Young;Goo, Nam-Seo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.76-80
    • /
    • 2012
  • This paper demonstrates how to implement inherent pitching stability in an insect-mimicking flapping-wing system for vertical takeoff. Design and fabrication of the insect-mimicking flapping-wing system is briefly described focusing on the recent modification. Force produced by the flapping-wing systems is estimated using the UBET (Unsteady Blade Element Theory) developed in the previous work. The estimation shows that the wing twist placed in the modified system can improve thrust production for about 10 %. The estimated thrust is compared with the measured thrust, which proves that the UBET provides fairly good estimations for the thrust produced by the flapping-wing systems. The vertical takeoff test shows that inherent pitching stability can be implemented in an insect-mimicking flapping-wing system by aligning the aerodynamic force center and center of gravity.

Relationship Between Net Penetration Rate and Thrust of Shielded TBM in Hard Rock (암반층에서 Shield TBM의 굴착속도와 추력과의 관계)

  • Park, Chul-Hwan;Park, Chan;Jeon, Yang-Soo;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.115-119
    • /
    • 2002
  • Four tunnels have been planned to operate a large diameter shielded TBM in Gwangju urban subway construction site. No.1 tunnel has completely been excavated for 13 months operating. Net penetration rate and its relations with thrust farce of the shielded TBM are analysis in this report. This shallow depth tunnel of 536m length is located in soil layers at launching and in hard rocks at ending with 84 m length. The weekly net penetration rates haute dropped down as low as 20∼110 mm/hr in rock while 400∼800 mm/hr in soil. The actual penetration rates we proved to be high as the theoretical penetration rate which is analysis in consideration of conditions of machine and rock. And net penetration rate is investigated to increase linearly thrust force.

Effects of Cooling Flow Rate on Gas Foil Thrust Bearing Performance (냉각 유량이 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.76-80
    • /
    • 2023
  • This paper describes an experimental investigation of the effect of cooling flow rate on gas foil thrust bearing (GFTB) performance. In a newly developed GFTB test rig, a non-contact type pneumatic cylinder provides static loads to the test GFTB and a high-speed motor rotates a thrust runner up to the maximum speed of 80 krpm. Force sensor, torque arm connected to another force sensor, and thermocouples measures the applied static load, drag torque, and bearing temperature, respectively, for cooling flow rates of 0, 25, and 50 LPM at static loads of 50, 100, and 150 N. The test GFTB with the outer radius of 31.5 mm has six top foils supported on bump foil structures. During the series of tests, the transient responses of the bearing drag torque and bearing temperature are recorded until the bearing temperature converges with time for each cooling flow rate and static load. The test data show that the converged temperature decreases with increasing cooling flow rate and increases with increasing static load. The drag torque and friction coefficient decrease with increasing cooling flow rate, which may be attributed to the decrease in viscosity and lubricant (air) temperature. These test results suggest that an increase in cooling flow rate improves GFTB performance.