• Title/Summary/Keyword: Thrust Control

Search Result 691, Processing Time 0.026 seconds

Direct Thrust Control Response of Linear Induction Motor with Cage-type Secondary Considering End Effect (단부 효과를 고려한 농형 2차측을 갖는 선형 유도전동기의 직접 추력 제어 응답 특성 고찰)

  • Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.15-17
    • /
    • 2003
  • In this paper, direct thrust control(DTC) scheme is applied to a linear induction motor(LIM) with cage-type secondary. The line voltages and phase currents are detected and a thrust correction coefficient considering the end effect of the LIM is introduced in order to Improve the accuracy of thrust estimation in the DTC implementation. Experimental results for thrust and flux responses are presented.

  • PDF

An Operating Characteristics by the Direct Thrust Control of Single-sided Linear Induction Motor in Conveyance System

  • Shin, Dong-Ryul;Cho, Yun-Hyun;Woo, Jung-In;Teruo Kataoka;Noh, Tae-Kyun
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.45-49
    • /
    • 1998
  • In this paper, the direct thrust control of PWM Inverter-fed Single-sided Linear Induction Motor (hereinafter referred to as "SLIM") is achieved with Space Vector control and PI control. The trembling of air gap length which is occured between the primary winding core and the secondaty structure of the SLIM must be minimized in order to get quick response characteristic. First, voltage equations of SLIM are shown on the suitable d-q axis equivalent circuits which analyze characteristics of the thrust and the normal force. Also, modeling and analysis of the d-q axis equivalent circuits are able to make robust transient thrust from the current regulation in the equivalent circuits. These results exemplified the direct drive of SLIM with the reference speed and thrust were verified by the experiments.periments.

  • PDF

A Numerical Analysis of Thrust Development and Control using Multi-Nozzle (다발 노즐을 사용한 추력 발생 제어에 관한 수치적 연구)

  • Park, Hyung-Ju;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.288-291
    • /
    • 2010
  • Numerical analysis was conducted on thrust vector control using multi-nozzle system. The nozzle using flow valve switch to control mass flow of multi scarfed nozzle to manage thrust was considered. The operating characteristics of scarfed nozzle, thrust component and moment of multi nozzle in terms of mass flow rate were investigated by three dimensional flow simulation.

  • PDF

Study on the Fluidic Thrust Vector Control Using Co-Flow Concept

  • Wu, Kexin;Jin, Yingzi;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.675-678
    • /
    • 2017
  • In the present, various methods have been employed to obtain the lesser thrust loss. Numerical simulations have been carried out for optimizing the thrust vector control system. Thrust vector control based on coflowing shear layer is an effective method to control the primary jet direction in the absence of moving parts. Thrust vector in symmetric nozzles is acquired by secondary flow injections that result to boundary layer separation. The pressure in secondary flow inlet was varied to check the deflection angle of jet flow.

  • PDF

Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II (한국형발사체 추력벡터제어 직구동 방식 전기기계식 구동장치시스템 개발)

  • Lee, Hee-Joong;Kang, E-Sok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.911-920
    • /
    • 2016
  • For the pitch and yaw axis attitude control of launch vehicle, thrust vector control which changes the direction of thrust during the engine combustion is commonly used. Hydraulic actuation system has been used generally as a drive system for the thrust vector control of launch vehicles with the advantage of power-to-weight ratio. Nowadays, due to the developments of highly efficient electric motor and motor control techniques, it has done a lot of research to adopt electro-mechanical actuator for thrust vector control of small-sized launch vehicles. This paper describes system design and test results of the prototype of direct drive electro-mechanical actuation system which is being developed for the thrust vector control of $3^{rd}$ stage engine of KSVL-II.

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps (액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.

Optimal Design of Extremely Small Thrust VCM for Nanoindenter (나노 인덴터용 미소 추력 보이스코일 모터의 최적 설계)

  • 조주희;이진우;이철규;권병일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • In this paper, we propose the shape of extremely small thrust VCM for application of the Nanoindenter, which enables control of very small force and displacement. We performed optimization of the VCM shape using conjugated gradient method. And the purposes of optimization are the minimization of the permanent magnet size for the efficient systems, minimization of deviation of flux density from the air gap for operate on regular thrust and a linearization of thrust for a good control characteristic. The finite element method is used for characteristic analysis. The node moving method is used to redundant changes of design variables. As a result, the VCM produces a yew small force by the difference of flux density of lower part from higher one. Also, in a wide range of current (0[A]-1[A]), the VCM produces linear driving thrust by saturating the magnetic circuit path and operate on regular thrust by minimizing deviation of flux density of the air gap.

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

Thrust Control of Hybrid Propulsion System for Lunar Exploration (달 탐사를 위한 하이브리드 추진 시스템 추력제어)

  • Moon, Keunhwan;Han, Seongjoo;Kim, Hakchul;Kim, Kyehwan;Kim, Jinkon;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.34-41
    • /
    • 2014
  • A feasibility study of thrust control of hybrid propulsion system for lunar exploration is presented. The thrust control experiments were performed by controlling the oxidizer mass flow rate where the thrust modulation is carried by using a ball valve and a stepping motor. The gaseous oxygen (GOX) and the HDPE (High Density PolyEthylene) were used for the oxidizer and solid fuel, respectively. It was found that the thrust levels were stable without much fluctuation during the modulation period, and that the thrust was exactly controlled with target thrust modulation ratio of 53% and 32%.