• 제목/요약/키워드: Thrust Control

검색결과 692건 처리시간 0.03초

DC 편의된 다상 입력을 이용한 횡자속 선형 유도 전동기의 부상/추진 독립제어 (Decoupling Control of Levitation and Thrust Motion of The Transverse Flux Linear Induction Motor Using DC-biased Multi Phase Inputs)

  • 정광석;허진혁;백윤수
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1733-1740
    • /
    • 2004
  • In the transverse flux linear induction motor(TFLIM) with the general secondary composed of conductor and back-yoke, there exists a magnetized force into the normal direction or the air-gap direction of the thrust motion as well as the thrust force. Therefore, the various methodologies have been tried to use the normal force by the two independent control variables of the multi-phase input. But, as the force depends inevitably and strongly on the thrust force, it is essential to decouple both forces for two control index. In this paper, we suggest a novel approach capable of compensating the couple between both forces and the control index by using the DC-biased multi-phase input, and then realizing the independent control of TFLIM.

2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구 (A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection)

  • 임채민;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

배분력 제어를 통한 미세축 선삭가공에 관한 연구 (Study on Fine-shaft in Turning for Thrust Force Control)

  • 김규태;김원일;김상현;김경환
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.88-93
    • /
    • 2012
  • In this study, Machining fine shaft was examined by Lathe. method is proposed to control the thrust force to 0. through relationship between the cutting depth and the thrust force in turning, fine-shaft of less than 0.1mm diameter in turning is confirmed experimentally. also we propose practical expression to control thrust force in turning Through to change the approach angle, optimal tool design would be possible in turning.

리니어 펄스모터의 부하변동에 따른 일정추력 퍼지 강인제어 (Fuzzy Robust Control with Constant Thrust Force on Load Variation for Linear Pulse Motor)

  • 배동관;김광헌;박현수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 추계학술대회 논문집
    • /
    • pp.40-44
    • /
    • 2002
  • In this paper, robust control method using fuzzy PI parameter tuning is proposed to control constant thrust force on load variation. First, a structure and thrust force equations of the LPM are described. Second, an controller with PI parameter-tuning using a fuzzy theory is proposed to achieve high-precision position with constant thrust force of the LPM. Finally, the effectiveness of an fuzzy PI controller is demonstrated by some simulated and experimental results. Accurate tracking response and superior dynamic performance can be obtained due to the powerful on-line Fuzzy PI gain tuning method with regard parametric variations and load thrust force variations.

  • PDF

Numerical investigation of an add-on thrust vector control kit

  • AbuElkhier, Mohamed G.;Shaaban, Sameh;Ahmed, Mahmoud Y.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.39-57
    • /
    • 2022
  • Instead of developing new guided missiles, converting unguided missile into guided ones by adding guidance and controlkits hasbecome aglobaltrend.Ofthemost efficient andwidelyused thrust vector control(TVC) techniquesin rocketry isthe jet vanes placed inside the nozzle divergentsection. Upon deflecting them, lift created on the vanesistransferred to the rocket generating the desired control moment. The presentstudy examinesthe concept of using an add-on jet vaneTVC kit to a plain nozzle.The impact of adding the kit with different vaneslocations and deflectionanglesisnumericallyinvestigatedbysimulatingtheflowthroughthenozzlewiththekit.Twohingelocations are examined namely, at 24% and 36% of nozzle exit diameter. For each location, angles of deflection namely 0°, 5°, 10°, and 15° are examined. Focus is made on variation of control force, thrust losses, lift and drag on vanes, jet inclination, and jetflow structure withTVCkit design parameters.

지상 연소 시험을 위한 킥 모터의 추력 축 정렬 (The Thrust Axis Alignment of Kick Motor for Ground Firing Test)

  • 정동호;김지훈;이한주;오승협
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.389-392
    • /
    • 2008
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to thrust axis alignment. This article deals with the simple method of thrust axis alignment of Kick Motor.

  • PDF

수중운동체의 자동 수심조절 장치 설계 (A design of auto-depth controller for underwater vehicle)

  • 정연태;이영섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.527-532
    • /
    • 1993
  • Generally the method of depth controlling is classified into buoyancy control and thrust control. In this study, we employed thrust control system. And mathematical modeling and computer simulation are performed in order to design auto depth control system for underwater vehicle. Consequently, the specifications of components are determined, and the performance of system is analyzed.

  • PDF

과팽창 초음속제트의 방향 제어를 위한 유체역학적 제어의 동특성 연구 (Analysis of Dynamic Characteristics of Fluidic Thrust Vector Control for the Over-expanded Supersonic Jet)

  • 허준영;유광희;조민경;성홍계;이열;전영진;조승환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.123-127
    • /
    • 2009
  • 기계적 제어장치를 사용하지 않으면서도 추력방향 제어가 가능한 유체역학적 추력편향제어(Fluidic Thrust Vector Control; FTVC)기법에 대한 연구 논문이다. 2차 유동은 주 유동 흐름과 같은 방향으로 분사하였고, 선행연구를 통해 정상(steady)상태의 수치해석 결과는 실험과 비교 검증하였다. 이를 바탕으로 비정상(unsteady) 수치해석을 수행하였고, 위아래로 제트가 편향이 될 때에 소요되는 시간과 벽면에서의 압력 분포 등을 조사하여 추력벡터의 동특성을 연구하였다.

  • PDF

Thrust Force Estimation using Flexible Neural Networks

  • Kim, Myeong-Hee;Shigeyasu Kawaji;Masaki Arao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.47.1-47
    • /
    • 2001
  • The drilling process has a great importance for the production technology due to its widerspread use in the manufacturing industry. In order to enhance a maximum production rate and prevent the drill from the damage, it is important to monitor and control the drilling system. Thrust force and cutting torque are the main output variables in the design of drilling control systems. In this paper, an alternative estimation method of thrust force by using flexible neural networks is proposed. Flexible neural network uses the sigmoid activation function with adjustable parameter in order to enhance the approximation accuracy ...

  • PDF

유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어 (Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control)

  • 이호철;최용석;송택렬;송찬호;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.