• Title/Summary/Keyword: Thrust Change

Search Result 179, Processing Time 0.023 seconds

A Study on the Performance of Ramp Tabs Asymmetrically Installed in the Supersonic Nozzle Exit (초음속 노즐 출구에 비대칭적으로 설치한 램프 탭의 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.934-939
    • /
    • 2007
  • Thrust vector control(TVC) is the method which generates the side force and moment by controlling the exhausting gas directly from the supersonic nozzle to change the trajectory of a missile quickly. In this paper, performance study on the tapered ramp tabs asymmetrically installed in the supersonic nozzle exhaust for the thurst vector control has been carried out using the supersonic cold flow system. To study the shock wave structure and location of the oblique shock wave produced by the ramp tab, the flow field visualization using the schlieren system is conducted. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Pressure Control of a Variable Thrust Solid Propulsion System Using On-Off Controllers (On-Off 제어기를 이용한 가변추력 고체추진 기관의 압력제어)

  • Kwon, Soon-Kyu;Kim, Young-Seok;Ko, Sang-Ho;Suh, Seok-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.942-948
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we introduce controllers for combustion chamber pressure using on-off control techniques which have been known for relatively easy implementation and energy efficiency. For this, we use a simple pressure change model by considering only mass conservation within the combustion chamber and we design a classical controllers and on-off controllers with are Pulse Width Modulation(PWM) and Pulse Width Pulse Frequency Modulation (PWPFM). Then we compare the performance results of the controllers through numerical simulations.

  • PDF

Comparison and Analysis of Linear Oscillatory Actuator According to Mover Type (왕복운동 리니어 액추에이터의 가동자 형태에 따른 전자기적 특성해석 및 비교)

  • 장석명;최장영;정상섭;이성호;조한욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.213-223
    • /
    • 2004
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability. The advantages of such a motor are that it has a good linearity and has no need of such mechanical energy conversion parts, which change rotary motion into linear motion, as screws, gears, chains etc In this paper, two structures of LOA are analyzed. One is the moving-coil type LOA and the other is moving-magnet type LOA. Two types of LOA are analyzed, with reference to the following parameters as variables: magnetic field, flux linkage, motor thrust and back emf. These variables are derived by the use of analytical method in terms of two-dimensional rectangular coordinate system. The maximum values of thrust according to such design parameters as air-gap length and magnet height for each model is also represented. The results are validated extensively by comparison with finite element method. In particular, we experiment moving-coil LOA which is already manufactured and confirm that the experimental results are shown in good agreement with analysis through the comparison of between analytical and experimental results

Comparison of Effectiveness for Performance Tuning of Liquid Rocket Engine

  • Cho, Won Kook;Kim, Chun Il
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.16-22
    • /
    • 2018
  • An analysis has been made on the performance variation due to pressure drop change at propellant supply pipes of liquid rocket engine. The objective is to compare the effectiveness of control variables to tune the liquid rocket engine performance. The mode analysis program has been used to estimate the engine performance for different modes which is realized by controlling the flow rate of propellant. The oxidizer of combustion chamber, the fuel of combustion chamber, the oxidizer of gas generator and the fuel of gas generator are the independent variables to control engine thrust, engine mixture ratio and temperature of gas generator product gas. The analysis program is validated by comparing with the powerpack test results. The error range of compared variables is order of 4%. After comparison of tuning effectiveness it is turned out that the pressure drop at oxidizer pipe of gas generator and pressure drop at combustion chamber fuel pipe and the pressure drop at the fuel pipe of gas generator can effectively tune the thrust of engine, mixture ratio of engine and temperature of product gas from gas generator respectively.

Numerical Analysis of the Effect of Fuselage of Fan-in-body Aircraft on the Pusher Propeller

  • Kang, Jiwook;Jang, Jisung;You, Younghyun;Hyun, Youngo;Lee, Jonghun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.26-35
    • /
    • 2021
  • In this study, CFD analysis was conducted to compare the aerodynamic performance of the isolated propeller and pusher propeller, which is affected by the wake of wide fuselage. The moving reference frame (MRF) method was used for isolated propeller analysis, while the MRF and sliding mesh method were used sequentially for the pusher propeller to analyze the change in the aerodynamic characteristics based on the azimuth angle. Under the same torque condition, the thrust of the pusher propeller was greater than that of the isolated propeller. Thrust increment of the pusher propeller was mainly generated near the root of the blade where the fuselage wake was concentrated. The net efficiency of the pusher propeller was greater than or equal to that of the isolated propeller. Because of the flat fuselage shape, thrust and torque of the pusher propeller periodically changed with the rotation of the propeller.

A Study on the Operational Efficiency of UAM(Urban Aerial Mobility)s (도심항공모빌리티의 운용효율성에 관한 연구)

  • Jaedo Song
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.23-32
    • /
    • 2022
  • Prototype UAMs are shown to us in the market. When the complete product is delivered to market, the efficiency of each UAMs can be compared by default. Before the complete product is shown to us, the comparative study on efficiency of UAMs is performed under the product cost estimation. The efficiency analysis result reveals that both of Lift & Cruise type and vectored thrust type show good efficiency at the initial stage of product. At the near terms stage, five years later from initial stage end, efficiency gets some change. Vectored thrust type of UAMs show best efficiency at the near term stage of product. Because UAMs will be used in urban area, Seoul is the place where the UAMs will be used first. The flying route from Seoul City Hall to Yongsan Park, National Assembly in Yeouido, and City Airport is no more than 10 km distance. For this short distance route, efficiency will make multi-rotor type UAM be prefered to other types. For long distance route or commuting route, life & cruise type and vectored thrust type of UAMs will be prefered on account of operational efficiency.

Dynamics of a HDD spindle system due to the change of FDBs (유체베어링의 설계변화에 따른 HDD 스핀들 시스템의 동특성 해석)

  • Park, Ki-Yong;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.407-413
    • /
    • 2008
  • This paper investigates the dynamics of a HDD spindle system due to the change of FDBs. Flying height of the HDD spindle system is determined through the static analysis of the FDBs, and the stiffness and damping coefficients are calculated through the dynamic analysis of the FDBs. Free vibration characteristics and shock response of the HDD spindle system are analyzed by using the finite element method and the mode superposition method. Experimental modal test is also performed to verify the accuracy of the proposed method. This research shows that the stiffness coefficients of journal heating mostly affect the rocking frequencies because their magnitude are within the range of the stiffness of supporting structure. It also shows that the damping coefficients of thrust bearing mostly affect the axial frequency because the stiffness of thrust bearing is much smaller that that of supporting structure.

  • PDF

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

A study on the design, manufacturing and performance evaluation of air bearing spindle for PCB drilling (PCB드릴링용 공기 베어링 스핀들의 설계 제작 및 성능평가에 관한 연구)

  • Kim Sang-Jin;Bae Myung-Il;Kim Hyeung-Chul;Kim Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.29-36
    • /
    • 2006
  • Micro drilling by high-speed air bearing spindle is very useful manufacturing technology in electronic industry For the design of high speed air bearing spindle, there are considered stability of air bearing spindle, allowable load of air bearing, run out and tooling system design for micro drill's attach and remove. According to suggested details, we designed and manufactured high-speed air bearing spindle and carried out performance estimation such as run out, temperature change in running air bearing spindle, stiffness, chucking torque. Results are follows; Run out was measured under $5{\mu}m$ at air bearing spindle revolution $20,000\sim125,000rpm$. High speed air bearing spindle's temperature rose about $20^{\circ}C$ after 5 minutes from running and then was fixed. Allowable thrust load of spindle was 17kgf. Chucking torque of collet was 15kgfcm.

Influence of Large Change of Specific Speed on the Performance of Very Low Specific Speed Centrifugal Pump (비속도의 큰 변화가 극저비속도 원심펌프의 성능에 미치는 영향)

  • Choi, Young-Do;Kagawa, Shusaku;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.40-46
    • /
    • 2006
  • Efficiency of a centrifugal pump is known to drop rapidly with a decrease of specific speed $n_s$. However, below $n_s=60\;[min^{-1},\;m^3/min,\;m]$, the pump characteristics are not yet clear. Therefore, present study is aimed to investigate the influence of large change of specific speed on the performance of a very low specific speed centrifugal pump. Moreover, influence of impeller configuration on the performance of very low specific speed pump is investigated. The results show that very low specific speed can be accomplished by reducing volute throat sectional area using circular spacer. Influence of the spacer's location and configuration in the discharge passage on the pump performance is very small. Best efficiency of very low specific speed centrifugal pump decreases proportionally to the specific speed but the best efficiency decreases on a large scale in the range of $n_s<40$. Influence of impeller configuration on the pump performance and radial thrust of centrifugal pump are considerably small in the range of extremely low specific speed $(n_s=25)$.