• Title/Summary/Keyword: Throughput.

Search Result 4,601, Processing Time 0.028 seconds

On the Trade-Off between Throughput Maximization and Energy Consumption Minimization in IEEE 802.11 WLANs

  • Serrano, Pablo;Hollick, Matthias;Banchs, Albert
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.150-157
    • /
    • 2010
  • Understanding and optimizing the energy consumption of wireless devices is critical to maximize the network lifetime and to provide guidelines for the design of new protocols and interfaces. In this work, we first provide an accurate analysis of the energy performance of an IEEE 802.11 WLAN, and then we derive the configuration to optimize it. We further analyze the impact of the energy configuration of the stations on the throughput performance, and we discuss under which circumstances throughput and energy efficiency can be both jointly maximized and where they constitute different challenges. Our findings are that, although an energy-optimized configuration typically yields gains in terms of throughput as compared against the default configuration, it comes with a reduction in performance as compared against the maximum-bandwidth configuration, a reduction that depends on the energy parameters of the wireless interface.

Conflict Graph-based Downlink Resource Allocation and Scheduling for Indoor Visible Light Communications

  • Liu, Huanlin;Dai, Hongyue;Chen, Yong;Xia, Peijie
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.36-41
    • /
    • 2016
  • Visible Light Communication (VLC) using Light Emitting Diodes (LEDs) within the existing lighting infrastructure can reduce the implementation cost and may gain higher throughput than radio frequency (RF) or Infrared (IR) based wireless systems. Current indoor VLC systems may suffer from poor downlink resource allocation problems and small system throughput. To address these two issues, we propose an algorithm called a conflict graph scheduling (CGS) algorithm, including a conflict graph and a scheme that is based on the conflict graph. The conflict graph can ensure that users are able to transmit data without interference. The scheme considers the user fairness and system throughput, so that they both can get optimum values. Simulation results show that the proposed algorithm can guarantee significant improvement of system throughput under the premise of fairness.

Worst-case Guaranteed Scheduling algorithm for HR-WPAN (HR-WPAN을 위한 Worst-case Guaranteed Scheduling algorithm)

  • Kim, Je-Min;Lee, Jong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.249-251
    • /
    • 2007
  • The proposed LDS(Link-status Dependent Scheduling) algorithm in HR-WPAN up to now aims at doing only throughput elevation of the whole network, when the crucial DEV(Device) is connected with worst-link relatively, throughput of this DEV becomes aggravation, The proposed the WGS(Worst-case Guaranteed Scheduling) _algorithm in this paper guarantees throughput of the DEV which is connected with worst-link in a certain degree as maintaining throughput of all DEVs identically even if a link-status changes, decreases delay of the whole network more than current LDS algorithm Therefore proposed WGS algorithm in this paper will be useful in case of guaranteeing throughput of a DEV which is connected worst-link in a certain degree in a design of HR-WPAN hereafter.

  • PDF

Optimal Sensing Time for Maximizing the Throughput of Cognitive Radio Using Superposition Cooperative Spectrum Sensing

  • Vu-Van, Hiep;Koo, Insoo
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.221-227
    • /
    • 2015
  • Spectrum sensing plays an essential role in a cognitive radio network, which enables opportunistic access to an underutilized licensed spectrum. In conventional cooperative spectrum sensing (CSS), all cognitive users (CUs) in the network spend the same amount of time on spectrum sensing and waste time in remaining silent when other CUs report their sensing results to the fusion center. This problem is solved by the superposition cooperative spectrum sensing (SPCSS) scheme, where the sensing time of a CU is extended to the reporting time of the other CUs. Subsequently, SPCSS assigns the CUs different sensing times and thus affects both the sensing performance and the throughput of the system. In this paper, we propose an algorithm to determine the optimal sensing time of each CU for SPCSS that maximizes the achieved system throughput. The simulation results prove that the proposed scheme can significantly improve the throughput of the cognitive radio network compared with the conventional CSS.

Throughput of Coded DS CDMA/Unslotted ALOHA Networks with Variable Length Data Traffic and Two User Classes in Rayleigh Fading FSMC Model

  • Tseng, Shu-Ming;Chiang, Li-Hsin;Wang, Yung-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4324-4342
    • /
    • 2014
  • Previous papers analyzed the throughput performance of the CDMA ALOHA system in Rayleigh fading channel, but they assume that the channel coefficient of Rayleigh fading was the same in the whole packet, which is not realistic. We recently proposed the finite-state Markov channel (FSMC) model to the throughput analysis of DS uncoded CDMA/unslotted ALOHA networks for fixed length data traffic in the mobile environment. We now propose the FSMC model to the throughput analysis of coded DS CDMA/unslotted ALOHA networks with variable length data traffic and one or two user classes in the mobile environment. The proposed DS CDMA/unslotted ALOHA wireless networks for two user classes with access control can maintain maximum throughput for the high priority user class under high message arrival per packet duration.

Throughput Improvement of an AMQAM Scheme by using New Switching Thresholds over Nakagami-m Fading Channels

  • Lee, Youngkou;Park, Sungsoo;Insoo Koo;Kim, Seung-Geun;Kim, Kiseon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1440-1443
    • /
    • 2002
  • In this paper, we investigate the throughput improvement of an adaptive M-ary quadrature modulation (AMQAM) scheme by using new switching thresh-olds over slow frequency nonselective Nakagami-m fading channels. The new switching thresholds are obtained by using the approximated BER expressions with complimentary error functions for each modulation scheme given in AWGN channels. By using the new switching thresholds, we can improve the maximum system throughput. For example, we get the maximum throughput improvement about 0.32 when tile target BER is 10$\^$-3/ and the fading figure m = 3.

  • PDF

Performance Evaluation on Throughput of a Petri Net Modeled Food Business

  • Naoki Nakayama;Shingo Yamaguchi;Ge, Qi-Wei;Minoru Tanaka
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.661-664
    • /
    • 2000
  • A workflow expresses the How of persons and things related to a business. To improve efficiency of a business, it is important to grasp and evaluate the actual situation of the current business. Till now, researches on workflows have been done almost on once business and these results can not be simply applied to food business. Besides, it is also important how to evaluate a food business workflow with a specific standard. In this paper, we propose a modeling method of food business by using hierarchical Petri net. Then we propose a concept, called throughput, as a standard to evaluate the workflows. Finally we show a method how to compute throughput and meanwhile apply a Petri net tool, Design/CPN, to do simulation of computing throughput. Our simulation result shows the modeling method and computation method of throughput are reasonable and useful.

  • PDF

Performance Analysis of Transmit Diversity in Multiuser Data Networks With Fading Correlation

  • Zhang, Kai;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.444-450
    • /
    • 2008
  • This paper studies the performance of multiuser data networks with transmit diversity under correlated fading channels. Previous work shows that correlated fading reduces the link performance of multiple antenna systems, but how correlated fading affects the throughput of multiuser data networks is still unknown since the throughput depends not only on the link performance but also on the multiuser diversity. We derive the throughput of the multiuser data networks with various transmit diversity schemes under correlated fading channels. The impact of correlated fading on the throughput is investigated. Analytical and simulation results show that, although correlated fading is harmful for link performance, it increases the throughput of the multiuser data networks if the transmit scheme is appropriately selected.

Excess Power를 이용한 HSDPA throughput 개선

  • Kim, Tae-Hyun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.107-111
    • /
    • 2008
  • 3GPP는 사용자의 다운링크 패킷 데이터 Throughput을 높이고,NodeB에 MAC계층을 위치시켜, 사용자의 스케줄링과 재전송을 담당하게 함으로써, 다운링크 패킷의 전송 지연을 감소시키는 HSDPA(High Speed Data Packet Access)기술을 Release 5에서 도입하였다. NodeB에 위치한 MAC-hs 스케줄러는 각각의 사용자에게 가용한 NodeB의 RF power와 code 자원을 제공하며, R99에서 사용했던 Power control을 이용하는 대신, AMC(Adaptive Modulation and Coding)기능을 제공하여 Radio conditions에 따라 전송되는 Data Format을 조정하여 채널환경이 좋은 사용자에게는 높은 data Throughput을 제공하며, 채널환경이 좋지 않은 사용자에게는 낮은 data throughput을 제공하고 있다. 본 고에서는 매 TTI에 스케줄링된 사용자에게 제공하고도, RF power 및 code 자원이 남아 있을 경우, 스케줄러는 남은 자원을 각각의 사용자에게 재 분배하여, 초기에 추정한 HSDPA Throughput보다 향상된 성능을 갖을 수 있음을 설명하였다.

  • PDF

FENC: Fast and Efficient Opportunistic Network Coding in wireless networks

  • Pahlavani, Peyman;Derhami, Vali;Bidoki, Ali Mohammad Zareh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.52-67
    • /
    • 2011
  • Network coding is a newly developed technology that can cause considerable improvements in network throughput. COPE is the first network coding approach for wireless mesh networks and it is based on opportunistic Wireless Network Coding (WNC). It significantly improves throughput of multi-hop wireless networks utilizing network coding and broadcast features of wireless medium. In this paper we propose a new method, called FENC, for opportunistic WNC that improves the network throughput. In addition, its complexity is lower than other opportunistic WNC approaches. FENC utilizes division and conquer method to find an optimal network coding. The numerical results show that the proposed opportunistic algorithm improves the overall throughput as well as network coding approach.