• Title/Summary/Keyword: Throughput increase

Search Result 489, Processing Time 0.025 seconds

A New Dual Connective Network Resource Allocation Scheme Using Two Bargaining Solution (이중 협상 해법을 이용한 새로운 다중 접속 네트워크에서 자원 할당 기법)

  • Chon, Woo Sun;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.8
    • /
    • pp.215-222
    • /
    • 2021
  • In order to alleviate the limited resource problem and interference problem in cellular networks, the dual connectivity technology has been introduced with the cooperation of small cell base stations. In this paper, we design a new efficient and fair resource allocation scheme for the dual connectivity technology. Based on two different bargaining solutions - Generalizing Tempered Aspiration bargaining solution and Gupta and Livne bargaining solution, we develop a two-stage radio resource allocation method. At the first stage, radio resource is divided into two groups, such as real-time and non-real-time data services, by using the Generalizing Tempered Aspiration bargaining solution. At the second stage, the minimum request processing speeds for users in both groups are guaranteed by using the Gupta and Livne bargaining solution. These two-step approach can allocate the 5G radio resource sequentially while maximizing the network system performance. Finally, the performance evaluation confirms that the proposed scheme can get a better performance than other existing protocols in terms of overall system throughput, fairness, and communication failure rate according to an increase in service requests.

PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway

  • Li, Meng;Wei, Xiuli;Li, Youzhi;Feng, Tao;Jiang, Linlin;Zhu, Hongwei;Yu, Xin;Tang, Jinxiu;Chen, Guozhong;Zhang, Jianlong;Zhang, Xingxiao
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.46.1-46.18
    • /
    • 2020
  • Background: High concentrations of particulate matter less than 2.5 ㎛ in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives: In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods: High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results: Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions: The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.

A Genetically Encoded Biosensor for the Detection of Levulinic Acid

  • Tae Hyun Kim;Seung-Gyun Woo;Seong Keun Kim;Byeong Hyeon Yoo;Jonghyeok Shin;Eugene Rha;Soo Jung Kim;Kil Koang Kwon;Hyewon Lee;Haseong Kim;Hee-Taek Kim;Bong-Hyun Sung;Seung-Goo Lee;Dae-Hee Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.552-558
    • /
    • 2023
  • Levulinic acid (LA) is a valuable chemical used in fuel additives, fragrances, and polymers. In this study, we proposed possible biosynthetic pathways for LA production from lignin and poly(ethylene terephthalate). We also created a genetically encoded biosensor responsive to LA, which can be used for screening and evolving the LA biosynthesis pathway genes, by employing an LvaR transcriptional regulator of Pseudomonas putida KT2440 to express a fluorescent reporter gene. The LvaR regulator senses LA as a cognate ligand. The LA biosensor was first examined in an Escherichia coli strain and was found to be non-functional. When the host of the LA biosensor was switched from E. coli to P. putida KT2440, the LA biosensor showed a linear correlation between fluorescence intensity and LA concentration in the range of 0.156-10 mM LA. In addition, we determined that 0.156 mM LA was the limit of LA detection in P. putida KT2440 harboring an LA-responsive biosensor. The maximal fluorescence increase was 12.3-fold in the presence of 10 mM LA compared to that in the absence of LA. The individual cell responses to LA concentrations reflected the population-averaged responses, which enabled high-throughput screening of enzymes and metabolic pathways involved in LA biosynthesis and sustainable production of LA in engineered microbes.

QTL Identification for Slow Wilting and High Moisture Contents in Soybean (Glycine max [L.]) and Arduino-Based High-Throughput Phenotyping for Drought Tolerance

  • Hakyung Kwon;Jae Ah Choi;Moon Young Kim;Suk-Ha Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.25-25
    • /
    • 2022
  • Drought becomes frequent and severe because of continuous global warming, leading to a significant loss of crop yield. In soybean (Glycine max [L.]), most of quantitative trait loci (QTLs) analyses for drought tolerance have conducted by investigating yield changes under water-restricted conditions at the reproductive stages. More recently, the necessity of QTL studies to use physiological indices responding to drought at the early growth stages besides the reproductive ones has arisen due to the unpredictable and prevalent occurrence of drought throughout the soybean growing season. In this study, we thus identified QTLs conferring wilting scores and moisture contents of soybean subjected to drought stress in the early vegetative stage using an recombinant inbred line (RIL) population derived from a cross between Taekwang (drought-sensitive) and SS2-2 (drought-tolerant). For the two traits, the same major QTL was located on chromosome 10, accounting for up to 11.5% of phenotypic variance explained with LOD score of 12.5. This QTL overlaps with a reported QTL for the limited transpiration trait in soybean and harbors an ortholog of the Arabidopsis ABA and drought-induced RING-D UF1117 gene. Meanwhile, one of important features of plant drought tolerance is their ability to limit transpiration rates under high vapor pressure deficiency in response to mitigate water loss. However, monitoring their transpiration rates is time-consuming and laborious. Therefore, only a few population-level studies regarding transpiration rates under the drought condition have been reported so far. Via employing an Arduino-based platform, for the reasons addressed, we are measuring and recording total pot weights of soybean plants every hour from the 1st day after water restriction to the days when the half of the RILs exhibited permanent tissue damage in at least one trifoliate. Gradual decrease in moisture of soil in pots as time passes refers increase in the severity of drought stress. By tracking changes in the total pot weights of soybean plants, we will infer transpiration rates of the mapping parents and their RILs according to different levels of VPD and drought stress. The profile of transpiration rates from different levels of severity in the stresses facilitates a better understanding of relationship between transpiration-related features, such as limited maximum transpiration rates, to water saving performances, as well as those to other drought-responsive phenotypes. Our findings will provide primary insights on drought tolerance mechanisms in soybean and useful resources for improvement of soybean varieties tolerant to drought stress.

  • PDF

Effects of Sodium Sulfite and Extrusion on the Nutritional Value of Soybean Products for Nursery Pigs

  • Burnham, L.L.;Kim, I.H.;Kang, J.O.;Rhee, H.W.;Hancock, J.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1584-1592
    • /
    • 2000
  • Three hundred nursery pigs were used in two growth assays (avg initial BW of 6.5 and 6.0 kg, respectively) to determine the effects of sodium sulfite ($Na_2SO_3$) as an extrusion aid for soy products used in diets for weanling pigs. In Exp. 1, treatments were arranged as $3{\times}2$ factorial with main effects of soy product [soybean meal (SBM), extruded SBM, and dry-extruded whole soybeans (DEWS)] and concentration of $Na_2SO_3$ (0 and 10 g/kg of soy product). The extruded SBM and DEWS treatments were processed in a dry extruder ($Insta-Pro^{(R)} $, Triple F Nutrition, Des Moines, IA) with barrel temperatures and throughputs of $169^{\circ}C$ and 578 kg/h, and $147^{\circ}C$ and 598 kg/h, respectively. All diets were formulated to 3.5 Mcal/kg DE, with 0.92% lysine for d 0 to 14, and 0.76% lysine for d 14 to 28. For d 0 to 14, there was a tendency for pigs fed diets with $Na_2SO_3$ to have greater ADG (p<0.08), and pigs fed SBM to have greater ADFI (p<0.02), thus pigs fed the extruded soy products has 15% greater gain/feed than those fed SBM (p<0.007). For d 14 to 28, there were no differences in ADG or gain/feed among pigs fed diets with SBM and those fed diets with the extruded soy products (p>0.15). However, pigs fed DEWS had greater ADG than pigs fed extruded SBM, and pigs fed $Na_2SO_3$ had greater ADG and ADFI compared to those not fed $Na_2SO_3$ (p<0.02 and 0.08, respectively). The positive response in ADG and gain/feed to the addition of $Na_2SO_3$ resulted with SBM and extruded SBM treatments, and not with DEWS (interaction effect, p<0.04). Overall (d 0 to 28), pigs fed DEWS had greater ADG (p<0.01) and gain/feed (p<0.08) than pigs fed extruded SBM. Also pigs fed diets with $Na_2SO_3$ had greater ADG, ADFI, and gain/feed compared to those fed diets without $Na_2SO_3$ (p<0.002, 0.04, and 0.04, respectively). Exp. 2 was designed as a $2{\times}3$ factorial with main effects of soy product (SBM and DEWS) and concentration of $Na_2SO_3$ (none, 7.5, and 15.0 g/kg of soy product). As in Exp. 1, all diets were formulated to 3.5 Mcal/kg DE, with 0.92% lysine for d 0 to 13, and 0.76% lysine for d 13 to 53. At a constant processing temperature (148 to $149^{\circ}C$, $Na_2SO_3$ increased throughput of the extruder (578, 595, and 602 kg/h for the 0, 7.5, and 15.0 g/kg additions, respectively). For d 0 to 13, treatment had no effect on ADG or ADFI, but gain/feed decreased for pigs fed SBM with increasing concentrations of $Na_2SO_3$, and increased for pigs fed DEWS with increasing concentrations of $Na_2SO_3$ (SBM vs DEWS sulfite quadratic interaction, p<0.03). For d 13 to 35, pigs fed DEWS had greater ADG (p<0.01) and gain/feed (p<0.001) than pigs fed SBM. Also, ADFI decreased and gain/feed increased with increasing concentrations of $Na_2SO_3$ (linear effects, p<0.04 and 0.01, respectively). Overall, pigs fed the diets with DEWS had greater ADG and gain/feed than pigs fed SBM (p<0.003 and 0.002, respectively), and $Na_2SO_3$ tended to decrease ADFI and increase gain/feed (linear effects, p<0.07 and 0.06, respectively). In conclusion, pigs fed DEWS had greater rate and efficiency of gain than pigs fed SBM. Also, adding $Na_2SO_3$ prior to extrusion increased yield and feed efficiency.

Mass Screening of Lovastatin High-yielding Mutants through Statistical Optimization of Sporulation Medium and Application of Miniaturized Fungal Cell Cultures (Lovastatin 고생산성 변이주의 신속 선별을 위해 통계적 방법을 적용한 Sporulation 배지 개발 및 Miniature 배양 방법 개발)

  • Ahn, Hyun-Jung;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.297-304
    • /
    • 2007
  • For large and rapid screening of high-yielding mutants of lovastatin produced by filamentous fungal cells of Aspergillus terreus, one of the most important stage is to test as large amounts of mutated strains as possible. For this purpose, we intended to develop a miniaturized cultivation method using $7m{\ell}$ culture tube instead of traditional $250m{\ell}$ flask (working volume $50m{\ell}$). For obtaining large amounts of conidiospores to be used as inoculums for miniaturized cultures, 4 components i.e., glucose, sucrose, yeast extract and $KH_2PO_4$ were intensively investigated, which had been observed to show positive effect on enhancement of spore production through Plackett-Burman design experimet. When optimum concentrations of these components that were determined through application of response surface method (RSM) based on central composite design (CCD) were used, maximum spore numbers amounting to $1.9\times10^{10}$ spores/plate were obtained, resulting in approximately 190 fold increase as compared to the commonly used PDA sporulation medium. Using the miniaturized cultures, intensive strain development programs were carried out for screening of lovastatin high-yielding as well as highly reproducible mutants. It was observed that, for maximum production of lovastatin, the producers should be activated through 'PaB' adaptation process during the early solid culture stage. In addition, they should be proliferated in condensed filamentous forms in miniaturized growth cultures, so that optimum amounts of highly active cells could be transferred to the production culture-tube as reproducible inoculums. Under these highly controlled fermentation conditions, compact-pelleted morphology of optimum size (less than 1 mm in diameter) was successfully induced in the miniaturized production cultures, which proved essential for maximal utilization of the producers' physiology leading to significantly enhanced production of lovastatin. As a result of continuous screening in the miniaturized cultures, lovastatin production levels of the 81% of the daughter cells derived from the high-yielding producers turned out to be in the range of 80%$\sim$120% of the lovastatin production level of the parallel flask cultures. These results demonstrate that the miniaturized cultivation method developed in this study is efficient high throughput system for large and rapid screening of highly stable and productive strains.

Optimization of the cryopreserved condition for utilization of GPCR frozen cells (GPCR 냉동보관 세포의 활용을 위한 냉동조건의 최적화 연구)

  • Noh, Hyojin;Lee, Sunghou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1200-1206
    • /
    • 2015
  • The major target for drug discovery, G-protein coupled receptor (GPCR) is involved in many physiological activities and related to various diseases and disorders. Among experimental techniques relating to the GPCR drug discovery process, various cell-based screening methods are influenced by cell conditions used in the overall process. Recently, the utilization of frozen cells is suggested in terms of reducing data variation and cost-effectiveness. The aim of this study is to evaluate various conditions in cell freezing such as temperature conditions and storage terms. The stable cell lines for calcium sensing receptor and urotensin receptor were established followed by storing cultured cells at $-80^{\circ}C$ up to 4 weeks. To compare with cell stored at liquid nitrogen, agonist and antagonist responses were recorded based on the luminescence detection by the calcium induced photoprotein activation. Cell signals were reduced as the storage period was increased without the changes in $EC_{50}$ and $IC_{50}$ values $EC_{50}:3.46{\pm}1.36mM$, $IC_{50}:0.49{\pm}0.15{\mu}M$). In case of cells stored in liquid nitrogen, cell responses were decreased comparing to those in live cells, however changes by storage periods and significant variations of $EC_{50}/IC_{50}$ values were not detected. The decrease of cell signals in various frozen cells may be due to the increase of cell damages. From these results, the best way for a long-term cryopreservation is the use of liquid nitrogen condition, and for the purpose of short-term storage within a month, $-80^{\circ}C$ storage condition can be possible to adopt. As a conclusion, the active implementation of frozen cells may contribute to decrease variations of experimental data during the initial cell-based screening process.

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.