• Title/Summary/Keyword: Throttle valve

Search Result 113, Processing Time 0.023 seconds

Evaluation of Indirect Methods of Engine Torque Measurement (엔진 토크의 간접적(間接的)인 측정(測定) 방법(方法)에 관한 연구(硏究))

  • Ryu, K.H.;Kang, S.B.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 1991
  • This study was carried out to evaluate indirect methods of engine torque measurement. Three indirect methods based on throttle valve opening, exhaust gas temperature and inlet air pressure were compared. The indirect method based on throttle valve opening appeared to be the most satisfactory in terms of accuracy and response time. The discrepancies between the direct method and the indirect method based on throttle valve opening in measuring engine torque were 2% on t he average.

  • PDF

An Experimental Study on a Flowfield Characteristics in a Throttle Valve of SI Engine (SI 엔진의 스로틀 밸브에서 유동장 특성에 대한 실험해석)

  • Kim, Sungcho;Kim, Cheol;Choi, Jonggeun;Lee, Seokjeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.967-974
    • /
    • 2001
  • Experimental investigations on the flow characteristics of downstream region of a butterfly valve, which is used in SI engine, have been conducted according to Reynolds number and valve angle. Measurement programs of the flowfield using x-type of hotwire anemometry include the mean and fluctuating velocity, turbulnet intensity, shear stress, power spectrum and pressure loss coefficient. Experimental results show that flow characteristics and independent of relatively high Reynolds number; 60,000 and 80,000. It is also seen that streamwise mean velocities have relatively large velocity gradient around the butterfly valve with increasing the valve opening angle and this trend appears even in the far downstream region. The distributions of turbulent intensity and shear stress show irregular behavior regardless of the valve opening angle and those of the case of the valve opening angle of 45°are the largest. The pressure loss coefficient of the body surface of the throttle valve increases mildly with the increase of Reynolds number and increases rapidly with the reduction of the valve opening angle.

Electronic Throttle Valve Control Using BLDC Motor (BLDC 모터를 이용한 전자 스로틀 밸브 제어)

  • Kwon Yong-Chan;Park Jong-Won;Cho Hag-Lea;Son Jeong-Ki;Kwon Soon-Jae
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.163-165
    • /
    • 2006
  • Electronic throttle control(ETC) is critical to drive ability, fuel economy and emission performance of present day passenger vehicles. Until now, many automobile engineer and company have been development electronic throttle controller and control algorism, such as adaptive control, sliding control, nonlinear and so on. But there are almost electronic throttle control using DC motor or stepping motor. This paper is the design of an electronic throttle controller and electronic throttle valve control using BLDC motor instead of DC motor.

  • PDF

Development of Hybrid Methods for the Prediction of Internal Flow-Induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine (내부공력소음해석기법의 개발과 자동차용 엔진 흡기 시스템의 기류음 예측을 위한 적용)

  • 정철웅;김성태;김재헌;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.78-83
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthills acoustic analogy and Curls extension of Lighthills. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

  • PDF

Evaluation of Transient Performance of Carburettered Gasoline Engine (과도운전시 가솔린기관의 성능평가)

  • Cho, G.S.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.1-11
    • /
    • 1993
  • An experimental study was carried out to evaluate the characteristics of transient performance of carburettered gasoline engine under rapid accelerating transient driving conditions. In order to evaluate the characteristics of transient performance quantitatively, the concept of dead time $t_d$ response delay time $t_r$ are introduced. Performance parameters such as air mass fiowrate Gat, engine speed N, manifold boost pressure Pb, and output torque T are measured simultaneously during the rapid opening of the throttle valve by the stepping motor. During the rapid opening of the throttle valve, air mass fiowrate Gat is increased immediately without delay time, but response of engine revolution N, and output torque T are delayed. Therefore hesitation, and stumble phenomena are occurred. Dead time $t_d$ and response delay time $t_r$ of engine revolution N, which is extremely delayed comparing to other performance parameters, are respectively 0.2-0.3sec., 3.0-4.6sec., and dead time rate $t_d/{\Delta}t$ and response delay time rate $t_r/{\Delta}t$ are linearly increased with the throttle valve opening rate ${\theta}$ during the acceleration from 12 degree to 20 degree at 1250rpm.

  • PDF

Study on Optimization of Throttle Margin in High Pressure Turbine of Nuclear Power Plant (원자력 발전소 고압터빈의 교축여유(Throttle Margin) 최적화 연구)

  • Ko, W.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.43-49
    • /
    • 2010
  • In the present study, optimization of throttle margin for high pressure turbine to be retrofitted or partially modified for power uprating or life extension in nuclear power plant, has been performed to increase the electrical output. Throttle margin for high pressure turbine is required to maintain all the time the rated power by opening more of governor valves whenever inlet pressure is decreased due to the tube plugging of steam generator. If throttle margin of high pressure turbine is too much compared to remaining lifetime, loss of electrical output due to pressure drop of governor valves is inevitable. On the contrary, if it is too little, the rated power operation can not be accomplished when inlet pressure of high pressure turbine is dropped after many years operation. So, throttle margin for high pressure turbine in nuclear power plant is compromised considering for the degradation of steam generator, governor valve capacity, manufacturing tolerance of high pressure turbine, future plan of power uprating, and remaining lifetime of power plant.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

An experimental study on the behavior of fuel flow in intake manifold by the model (모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구)

  • 박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF