• 제목/요약/키워드: Throttle

검색결과 303건 처리시간 0.027초

CNN-LSTM 기반의 자율주행 기술 (CNN-LSTM based Autonomous Driving Technology)

  • 박가은;황치운;임세령;장한승
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1259-1268
    • /
    • 2023
  • 본 연구는 딥러닝의 합성곱과 순환신경망 네트워크를 기반으로 시각센서를 이용해 속도(Throttle)와 조향(Steering) 제어 기술을 제안한다. 학습 트랙을 시계, 반시계 방향으로 주행하며 카메라 영상 이미지와 조종 값 데이터를 수집하고 효율적인 학습을 위해 데이터 샘플링, 전처리 과정을 거쳐 Throttle과 Steering을 예측하는 모델을 생성한다. 이후 학습에 사용되지 않은 다른 환경의 테스트 트랙을 통해 검증을 진행하여 최적의 모델을 찾고 이를 CNN(Convolutional Neural Network)과 비교하였다. 그 결과 제안하는 딥러닝 모델의 성능이 뛰어남을 확인했다.

전자식 스로틀 제어시스템을 위한 오류 자기진단 기능 설계 및 구현 (The Design and Implementation of a Fault Diagnosis on an Electronic Throttle Control System)

  • 강종진;이우택
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.9-16
    • /
    • 2007
  • This paper describes the design and implementation of the fault diagnosis on the Electronic Throttle Control(ETC) System. The proposed fault diagnosis consists of an input signal, actuator and a processor diagnosis. The input signal diagnosis can detect the faults of the ETC system's input signals such as the position sensor fault, source voltage fault, load current fault, and desired position fault. The actuator diagnosis is able to detect the actuator fault due to the actuator aging and an obstacle which interfere in the movement of the actuator. The processor diagnosis detects the fault which prevents the microprocessor from operating the ETC software. In order to protect the breakdown of the ETC system and assure the driving safety, appropriate reactions are also proposed according to the detected faults. The safety and reliability of the ETC system can be improved by the proposed fault diagnosis.

SLIP CONTROLLER DESIGN FOR TRACTION CONTROL SYSTEM

  • Jung, H.;Kwak, B.;Park, Y.
    • International Journal of Automotive Technology
    • /
    • 제1권1호
    • /
    • pp.48-55
    • /
    • 2000
  • Two major roles of the traction control system (TCS) are to guarantee the acceleration performance and directional stability even in extreme road conditions, under which average drivers may not control the car properly. Commercial TCSs use experiential methods such as lookup table and gain-scheduling to achieve proper performance under various road and vehicle conditions. This paper proposes a new slip controller which uses the brake and the throttle actuator simultaneously. To avoid measurement problems and to get a simple structure, the brake controller and the throttle controller are designed using Lyapunov redesign method and multiple sliding mode control respectively. Through the hybrid use of brake and throttle controllers, the vehicle is insensitive to the variation of the vehicle mass, brake gain and road condition and can achieve the required acceleration performance. The proposed method is validated with simulations based on 15 DOF passenger car model.

  • PDF

스로틀 바디 제어신호 전달용 커넥터의 이상전압 강하 현상 원인 규명 (Root cause analysis on the phenomenon of voltage drop of connector used in the automotive throttle body control)

  • 조영진;장석원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1792-1797
    • /
    • 2007
  • This paper try to find root-cause of failure in a connector used in transmitting signals for throttle body control in automotives by analyzing possible failure causes and performing experiments to simulate the cable failure in field. The connector comprises fins, wires, and case moldings. The failure is due to degradation of initial clamping force required fixing fins and wires in the connector. Expansion and compression of the case molding material surrounding fins would cause the degradation. Investigations of strict initial claming force and control of thermal expansion property of the molding are required to prevent the failure.

  • PDF

Vehicle Tests of a Longitudinal Control Law for Application to Stop-and-Go Cruise Control

  • Moon, Ilki;Yi, Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1166-1174
    • /
    • 2002
  • This paper presents the implementation and vehicle tests of a vehicle longitudinal control scheme for Stop and Go cruise control. The control scheme consists of a vehicle-to-vehicle distance control algorithm and throttle/brake control algorithm for acceleration tracking. The desired acceleration of a vehicle for vehicle-to-vehicle distance control has been designed using Linear Quadratic optimal control theory. Performance of the control algorithm has been investigated via vehicle tests. A millimeter wave radar sensor has been used for distance measurement. A stepper motor and an electronic vacuum booster have been used for throttle/brake actuators, respectively. It has been shown that the proposed control algorithm can provide satisfactory performance.

차량 감/가속시의 엔진의 동적 응답 해석 (Analysis of Transient Response of an Engine to Throttle Tip-in/Tip-out)

  • 고강호
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/Tip out are analyzed. Because the hydraulic mounts have non-linearity that the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integral and relationship between unit impulse response functions and frequency response functions are therefore used to simulate the transient behaviors of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse courier transform of frequency response function achieved by laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

Canard Rotor/Wing 비행체 추진시스템의 회전익 및 천이모드 성능

  • 이창호
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.50-55
    • /
    • 2004
  • 이륙중량 900㎏의 CRW 비행체에 맞게 설계한 추진시스템에 대해서 회전익모드 및 천이모드에서의 성능해석을 수행하였다. 추진시스템은 터보제트엔진, 덕트류 및 노즐로 구성된다. 엔진 터빈출구부터 노즐까지의 덕트 내부유동을 1차원 유동으로 가정하여 압축성, 점성유동해석을 하였다. 특히 로터 블레이드내의 유동은 점성효과와 함께 원심력의 효과도 고려하였다. 계산결과로 회전익모드에서 요구동력을 만족시키기 위한 엔진 Throttle 범위와, 천이모드에서 요구동력 및 요구출력을 만족시키기 위한 엔진 Throttle, 유량배분, 로터회전속도, 순항 노즐면적 등을 제시하였다.

  • PDF

내부공력소음해석기법의 개발과 자동차용 엔진 흡기 시스템의 기류음 예측을 위한 적용 (Development of Hybrid Methods for the Prediction of Internal Flow-Induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine)

  • 정철웅;김성태;김재헌;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.78-83
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthills acoustic analogy and Curls extension of Lighthills. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

  • PDF

Tip-in/Tip-out 시의 엔진의 동적 거동 해석 (Dynamic Analysis of Engine Response to Throttle Tip-in/Tip-out)

  • 고강호;국형석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.540-545
    • /
    • 2001
  • In this paper dynamic responses of an engine, which is supported by hydraulic mount, to throttle tip-in/tip out are analyzed. Because the hydraulic mounts have non-linearity which the characteristics of stiffness and damping vary with frequencies, it is difficult to analyze the dynamic behavior of an engine using general integral algorithms. Convolution integrals and relationships between unit impulse response functions and frequency response functions are therefore used to simulate the transient behavior of an engine indirectly. In time domain, impulse response functions are calculated by two-side discrete inverse Fourier transform of frequency response function achieved by Laplace transform of equations of motion. Considering the fact that the shapes of behavior of an engine simulated by the proposed method are in good agreement with test results, it is confirmed that the proposed method is very effective for the analysis of transient response to throttle tip-in/out of an engine with hydraulic mounts.

  • PDF