• Title/Summary/Keyword: Throttle

Search Result 303, Processing Time 0.03 seconds

STUDY ON THE OPTIMAL DESIGN OF A VEHICLE INTAKE SYSTEM USING THE BOOMING NOISE AND THE SOUND QUALITY EVALUATION INDEX

  • LEE J. K.;PARK Y. W.;CHAI J. B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, an index for the evaluation of a vehicle intake booming noise and intake sound quality were developed through a correlation analysis and a multiple factor regression analysis of objective measurement and subjective evaluation data. At first, an intake orifice noise was measured at the wide-open throttle test condition. And then, an acoustic transfer function between intake orifice noise and interior noise at the steady state condition was estimated. Simultaneously, subjective evaluation was carried out with a 10-scale score by 8 intake noise and vibration expert evaluators. Next, the correlation analysis between the psychoacoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding index for intake booming noise and sound quality are obtained from the multiple factor regression method. And, the optimal design of intake system was studied using the booming noise and the sound quality evaluation index for expectation performance of intake system. Conclusively, the optimal designing parameters of intake system from noise level and sound quality whose point of view were extracted by adapting comparative weighting between the booming noise and sound quality evaluation index, which optimized the process. These work could be represented guideline to system engineers, designers and test engineers about optimization procedure of system performance by considering both of noise level and sound quality.

Analysis of the Fuel Consumption and the Development of the Analysis Model of the Hybrid Tractor (하이브리드 트랙터의 해석모델 개발 및 연료 소비량 분석)

  • Kim, Dongmyung;Kim, Soochul;Lee, Sangheon;Kim, Yongjoo;Jnag, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.326-335
    • /
    • 2015
  • In this paper, is a study that analyzed the fuel consumption of hybrid tractor. Testing and analysis in order to evaluate the fuel consumption was performed. Analysis model was developed by using the SimulationX that is a commercial software. Also, map of the analysis model was modeled on the basis of test data. Test was performed using a dynamo device. The engine was tested the fuel consumption in accordance with the conditions on the load and throttle opening. The battery was tested the discharge and charge in accordance with the current amount. We verified the reliability of the analysis model by comparing the analysis results with the rest results. After considering the reliability of each analysis model was extended to the entire hybrid tractor system. To evaluate the efficiency using the analysis model, compared the fuel consumption of general tractor with hybrid tractor in the same load conditions.

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

TRANSIENT PERFORMANCE OF AN SI ENGINE BY TRANSIENT RESPONSE SPECIFICATIONS

  • Kwark, J.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.109-117
    • /
    • 2003
  • The analysis and evaluation of the transient performance by the transient response specifications under various acceleration speeds and types based on driver's typical acceleration habit are implemented by the experimental study to provide the appropriate direction for the transient control in a gasoline engine. The concept of the transient response specifications which consist of delay time, rising time, maximum overshoot and settling time, and the analysis method using them are introduced to evaluate the characteristics of the transient performance quantitatively. Furthermore four acceleration speeds and four acceleration types are set respectively to realize the various transient states which are similar to the real drive. Several performance parameters in terms of engine speed, manifold absolute pressure, fuel injection duration and air excess ratio are measured simultaneously during the various acceleration using a throttle actuator controlled by a PC. The transient response specifications characterized well the transient performance for the various acceleration speed and types quantitatively. Delay and rising time with increment of the acceleration speed became shorter, but settling time did longer. Intensified acceleration type appeared to be the most economical in view of fuel consumption, and linear acceleration type was found to have the least harmful emission concentration.

Calculation of the Transfer Function for a Liquid Rocket Engine using a Dynamic Model (액체로켓 엔진의 동특성 모델을 이용한 전달함수의 계산)

  • Park, Soon-Young;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.436-442
    • /
    • 2012
  • In the process of liquid rocket engine design, obtaining method of the dynamic characteristics of engine should be emphasized typically to determine the control logic and algorithms of the throttle valves in the propellant feed pipeline. However, determining the dynamic characteristics of an engine through the autonomous test is very hard and laborious, so that the numerical approach is prevailing. In this study, using the previously developed dynamic analysis model of the engine around the steady state, we introduced a disturbance to this model, and obtained the dynamic response in the time domain. And by applying the well-known Levy method to this temporal response, we could deduce the transfer function of that system that can give us various information of engine and can be manipulated to design the control system.

  • PDF

Development of Underwater Rocket Propulsion System for High-speed Cruises (고속 주행을 위한 수중용 로켓추진기관 개발)

  • Kwon, Minchan;Yoo, Youngjoon;Heo, Junyoung;Hwang, Heeseong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.112-118
    • /
    • 2019
  • The development of an underwater rocket propulsion system was described in this paper. Throttle able liquid propellant and hybrid rocket propulsion systems were selected for underwater propulsion. A subscale liquid rocket combustion chamber and it's portable stand were developed and their applicability was examined. 1.5-ton.f and 1.8-ton.f hybrid rockets were developed for underwater applications. The test results indicated that the 18-ton.f hybrid rocket fully complies to the performance and underwater cruise stability requirements; thus, its development was concluded to be successfully complete.

Analysis of Optimal Energy Consumption for Task Migration in Clouds (클라우드에서 태스크 이주를 위한 최적의 에너지 소비 임계값 분석)

  • Choi, HeeSeok;Choi, SookKyong;Park, JiSu;Suh, Teaweon;Yu, Heonchang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.131-134
    • /
    • 2013
  • 최근 클라우드 컴퓨팅의 발전과 상업적인 성공과 함께 클라우드 자원의 이용률을 최대로 유지하면서 에너지를 효율적으로 사용하기 위한 연구에 대한 관심이 커지고 있다. 자원의 사용률이 최대로 높아지게 되면 에너지 소비량이 급격하게 증가하여 많은 에너지를 사용하게 되므로 자원의 사용율과 에너지 사용은 트레이드오프 관계를 가지게 된다. 따라서 본 논문에서는 자원의 최대 사용 및 효율적인 에너지 사용을 위해 에너지 소비가 최적이 되는 자원 이용률의 임계값을 찾기 위한 연구를 수행하였다. 실험을 위해 자원 중 가장 많은 에너지를 소비하는 CPU를 이용하였고, 전력 측정을 위해 KEM2500 전력계와 ThrottleStop_500 프로그램을 사용하였다. 실험 결과 CPU 사용률이 약 90%일 때 에너지 사용량이 급격하게 증가하였으며, 기존의 평균 자원 이용률과 비교했을 때 12.3% 정도의 전기량이 더 소모됨을 확인하였다. 따라서 클라우드 컴퓨팅에서 CPU 자원의 이용률이 90%일 때 에너지가 최적이라고 할 수 있다.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

The Evaluation of an Electric Hybrid Power System for the High Endurance Drone (장기체공 드론용 하이브리드 전기 추진시스템 성능 평가)

  • Gang, Byeong Gyu;Kim, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.539-544
    • /
    • 2022
  • This research shows the test performance of a 6 kW-scale hybrid electric power system for the high endurance drone. The power system is composed of a two-stroke reciprocal engine, starter-generator and battery, and they are integrated as one power unit. The engine is designed to provide the house for holding the starter-generator at the end of a crankshaft in turn the engine and starter-generator can maintain the same speed during the operational period. In this way, the generated power is readily controlled by just manipulating an engine throttle movement. Moreover, the starter-generator can initiate an engine operation with an aid of battery power until the combustion process becomes stabilized. In consequence, integration mechanism between an engine and generator is simplified, which results in weight reduction achieved. The duty of back-up battery is to provide a starting power to generator via a system controller in addition to covering momentarily power shortage. Therefore, the electric power system is vindicated to provide 6 kW power through a ground test.

Anomaly Detection of Machining Process based on Power Load Analysis (전력 부하 분석을 통한 절삭 공정 이상탐지)

  • Jun Hong Yook;Sungmoon Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.173-180
    • /
    • 2023
  • Smart factory companies are installing various sensors in production facilities and collecting field data. However, there are relatively few companies that actively utilize collected data, academic research using field data is actively underway. This study seeks to develop a model that detects anomalies in the process by analyzing spindle power data from a company that processes shafts used in automobile throttle valves. Since the data collected during machining processing is time series data, the model was developed through unsupervised learning by applying the Holt Winters technique and various deep learning algorithms such as RNN, LSTM, GRU, BiRNN, BiLSTM, and BiGRU. To evaluate each model, the difference between predicted and actual values was compared using MSE and RMSE. The BiLSTM model showed the optimal results based on RMSE. In order to diagnose abnormalities in the developed model, the critical point was set using statistical techniques in consultation with experts in the field and verified. By collecting and preprocessing real-world data and developing a model, this study serves as a case study of utilizing time-series data in small and medium-sized enterprises.