Vegetation segmentation in a field color image is a process of distinguishing vegetation objects of interests like crops and weeds from a background of soil and/or other residues. The performance of the process is crucial in automatic precision agriculture which includes weed control and crop status monitoring. To facilitate the segmentation, color indices have predominantly been used to transform the color image into its gray-scale image. A thresholding technique like the Otsu method is then applied to distinguish vegetation parts from the background. An obvious demerit of the thresholding based segmentation will be that classification of each pixel into vegetation or background is carried out solely by using the color feature of the pixel itself without taking into account color features of its neighboring pixels. This paper presents a new pixel-based segmentation method which employs a multi-layer perceptron neural network to classify the gray-scale image into vegetation and nonvegetation pixels. The input data of the neural network for each pixel are 2-dimensional gray-level values surrounding the pixel. To generate a gray-scale image from a raw RGB color image, a well-known color index called Excess Green minus Excess Red Index was used. Experimental results using 80 field images of 4 vegetation species demonstrate the superiority of the neural network to existing threshold-based segmentation methods in terms of accuracy, precision, recall, and harmonic mean.
본 논문에서는 웨이브렛 변환을 이용하여 EMI(Electromagnetic Interference: 전자파 장해) 신호로부터 각각 다른 주파수 성분과 시간정보를 동시에 추출하고, 시간과 주파수 영역에서 웨이브렛 변환의 수행결과를 해석할 수 있도록 하였다. Daubechies-4 필터 계수를 사용한 다중해상도 해석(multiresolution analysis)을 수행하여 EMI 신호로부터 대상 신호의 주파수 성분이 속하는 주파수 대역을 추출하고, 웨이브렛 변환 결과를 통하여 시간정보를 얻었다. 또한 웨이브렛 변환 결과를 평가하기 위해 상관해석법을 시도하고, 웨이브렛 함수에 따른 변환 결과를 비교함으로써 해석하고자 하는 신호에 가장 적합한 웨이브렛 함수를 선택하여 신호의 파형분석과 고조파 해석을 시뮬레이션으로 검증하였다. 그리고 soft thresholding 기법을 이용하여 EMI 신호에 대한 잡음제거의 효과를 입증하였다.
Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.
The growth of telemedicine-based wireless communication for images-magnetic resonance imaging (MRI) and computed tomography (CT)-leads to the necessity of learning the concept of image compression. Over the years, the transform based and spatial based compression techniques have attracted many types of researches and achieve better results at the cost of high computational complexity. In order to overcome this, the optimization techniques are considered with the existing image compression techniques. However, it fails to preserve the original content of the diagnostic information and cause artifacts at high compression ratio. In this paper, the concept of histogram based multilevel thresholding (HMT) using entropy is appended with the optimization algorithm to compress the medical images effectively. However, the method becomes time consuming during the measurement of the randomness from the image pixel group and not suitable for medical applications. Hence, an attempt has been made in this paper to develop an HMT based image compression by utilizing the opposition based improved harmony search algorithm (OIHSA) as an optimization technique along with the entropy. Further, the enhancement of the significant information present in the medical images are improved by the proper selection of entropy and the number of thresholds chosen to reconstruct the compressed image.
최근 시각 관련 측정기 개발에 대한 관심이 높아지고 있다. 이에 본 연구는 자동 시각 굴절력 곡률계의 전자 부문 소프트웨어를 개발하였다. 만약 자동화된 시스템이 광학계로부터 나오는 영상을 이용하여 내부 처리를 거친 후 정확한 시각 측정치를 검사자에게 알려줄 수 있다면 잘못 측정되는 측정 횟수를 크게 줄일 수 있을 것이다. 본 연구는 형태학적 필터링(morphological filtering)과 그레이-레벨의 신호 강조(signal enhance) 기술들을 이용하여 자동 시각 굴절력 측정 시스템에 연동될 측정 알고리즘을 개발하였다. 알고리즘에서는 광학계로부터 도출된 영상으로부터 첫째로 형태학적 필터링 처리를 행한다. 이 과정은 처리가 어려운 원 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차 처리된 영상에 가해주는 그레이 수준 한계 기법을 통한 신호 강조 기법으로서 이는 영상의 그레이 값 분포가 다양함으로 인해서 발생되는 오차를 줄이기 위해서 사용된다. 그리하여 본 전자 부문 소프트웨어는 정확한 측정값 도출이 어려운 시각 영상에 적용되어 효과적으로 오차를 줄임으로써 보다 효율적인 시각 측정을 가능하게 하였다.
본 논문에서는 MR 영상의 3차원 가시화 및 분석을 위한 단일 채널 MR 영상의 자동 뇌영역 분할 방법을 제안한다. 이 방법은 4단계의 2차원 및 3차원 처리에 의하여 뇌윤곽을 찾아낸다. 1,2단계에서는 곡선 적합을 이용한 자동 문턱치화에 의하여 머리마스크와 초기 뇌마스크를 생성한다. 3단계에서 입방보간으로 초기 뇌마스크의 3차원 볼륨을 생성하여 형태학적 연산, 연결부위 레이블링에 의하여 중기 뇌마스크를 생성한다. 최종적으로 곡선 적합에 의한 자동 문턱치화를 이용하여 뇌마스크를 정련한다. 제안한 알고리즘은 영상의 슬라이스 방향을 고려할 필요가 없고 영상이 뇌 전체를 포함하지 않아도 되며, T1, T2, PD, SPGR등 다양한 종류의 MR 영상의 자동적인 뇌영역의 분할에 유용하다. 실험에서 20세트 MR 영상에 대하여 수동분할을 기준으로 0.97 이상의 유지도를 보였다.
텍스처럴 리전의 러프니스와 사람의 시각 시스템의 특성에 기초하여 세크멘테이션을 수행하는, 멀티미디어 텔레컨퍼런스를 위한 새로운 텍스처 세그멘테이션-베이스 영상 코우딩 기술을 제안한다. 세그멘테이션은, 텍스처의 영역이, 지각된 콘스탄트 인텐시티와 스무드 텍스처 및 러프 텍스처의 세가지 텍스처 클래스로 분류되도록 프랙탈 디멘전을 쓰레쉬호울딩하여 이루어진다. 각 세그먼트 바운더리와 각 텍스처 클래스를 위한 효과적인 코우딩 기술을 개발하여 높은 압축률과 좋은 영상 품질을 갖는 영상 코우딩 시스템을 달성하고, 이 기술의 코우딩 효율을 잘 확립된 기술 (디스크릿 코사인 트랜스폼(DCT) 영상 코우딩)의 코우딩 효율과 비교한다.
This paper proposes a novel active stereo matching technique using white auxiliary stripe pattern. The conventional active stereo matching techniques that uses two cameras and an active source such as projector can accurately estimate disparity information even in the areas with low texture compared to the passive ones. However, it is difficult that the conventional active stereo matching techniques using color code patterns acquire these patterns robustly if the object is composed of various colors or is exposed to complex lighting condition. To overcome this problem, the proposed method uses an additional white auxiliary stripe pattern to get and localize the color code patterns robustly. This paper proposes a process based on adaptive thresholding and thinning to obtain the auxiliary pattern accurately. Experimental results show that the proposed method more precisely measures the stepped sample whose depth is known in advance than the conventional method.
In this paper, we present early processing techniques for visual inspection of metallic parts. Since metallic surfaces give rise to specular reflections, it is difficult to extract object boundaries using elementary segmentation techniques such as edge detection or binary thresholding. In this paper, we present two techniques for finding object boundaries on micro bit images. First, we explain a technique for detecting blade boundaries using a directional correlation mask. Second, a line and angle extraction technique based on Harris corner detector and Hough transform is described. These techniques have been effective for detecting blade boundaries, and a number of experimental results are presented using real images.
This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.