• 제목/요약/키워드: Threshold-based Segmentation

검색결과 145건 처리시간 0.025초

조명과 배경에 강인한 동적 임계값 기반 손 영상 분할 기법 (An Illumination and Background-Robust Hand Image Segmentation Method Based on the Dynamic Threshold Values)

  • 나민영;김현정;김태영
    • 한국멀티미디어학회논문지
    • /
    • 제14권5호
    • /
    • pp.607-613
    • /
    • 2011
  • 본 논문에서는 조명과 배경에 강인한 동적임계값을 이용한 손 영상 분할방법을 제안한다. 먼저 시간단위 입력 차영상을 구하여 움직이는 물체에 대한 손의 실루엣을 추출한다 그 후, 추출된 손 실루엣에 해당하는 영상의 R,G,B 히스토그램 분석을 통하여 R,G,B 각각에 대한 임계구간을 동적으로 구한다. 마지막으로 획득된 동적 임계값을 이용하여 영상에서 손영역을 분할한 다음 모폴로지, 연결요소 분석, 플러드필 연산을 이용한 잡음 제거를 수행한다. 실험 결과 본 논문에서 제시하는 기법은 기존의 비전 기술을 통한 손 인식 기법들과 비교하여 별도의 고정임계값을 두지 않고 실행시간에 정확한 임계값을 추출 할 수 있으며, 다양한 배경과 조명에 대해서도 정확하게 손을 분할할 수 있다. 본 연구에서 제안한 기법은 혼합 현실 응용을 위한 사용자 인터페이스로 사용될 수 있다.

경로 재설정을 통한 3차원 시상 두뇌 자기공명영상 분할 (Automated Segmentation of 3-D Sagittal Brain MR Images Through Boundery Comparison)

  • 허신;손광훈;최윤식;강문기;이철희
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권2호
    • /
    • pp.145-156
    • /
    • 2000
  • 본 논문에서는 중앙시상 두뇌 자기공명영상 분할결과를 이용한 3차원 시상 두뇌 자기공명영상의 자동분할기법을 제안한다. 제안된 알고리즘에서는 먼저 3차원 시상 두뇌 자기공명영상의 중앙영상을 분할하고, 분할된 중앙두뇌 자기공명영상을 인접하는 영상에 마스크로 적용한다. 이 때 마스크 적용으로 인하여 인접하는 영상이 절단되는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위하여 절단 영역의 경계점을 검출한 후, 절단 영역에 대한 경로 재설정을 통해 절단 영역을 복원한다. 이러한 경로 재설정을 위해 connectivity-based threshold segmentation algorithm을 사용하였다. 실험결과 제안된 알고리즘의 유용성을 확인할 수 있었다.

  • PDF

Segmentation of Millimeter-wave Radiometer Image via Classuncertainty and Region-homogeneity

  • Singh, Manoj Kumar;Tiwary, U.S.;Kim, Yong-Hoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.862-864
    • /
    • 2003
  • Thresholding is a popular image segmentation method that converts a gray-level image into a binary image. The selection of optimum threshold has remained a challenge over decades. Many image segmentation techniques are developed using information about image in other space rather than the image space itself. Most of the technique based on histogram analysis information-theoretic approaches. In this paper, the criterion function for finding optimal threshold is developed using an intensity-based classuncertainty (a histogram-based property of an image) and region-homogeneity (an image morphology-based property). The theory of the optimum thresholding method is based on postulates that objects manifest themselves with fuzzy boundaries in any digital image acquired by an imaging device. The performance of the proposed method is illustrated on experimental data obtained by W-band millimeter-wave radiometer image under different noise level.

  • PDF

근사 임계값 추정을 통한 Otsu 알고리즘의 연산량 개선 (A Computational Improvement of Otsu's Algorithm by Estimating Approximate Threshold)

  • 이영우;김진헌
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.163-169
    • /
    • 2017
  • There are various algorithms evaluating a threshold for image segmentation. Among them, Otsu's algorithm sets a threshold based on the histogram. It finds the between-class variance for all over gray levels and then sets the largest one as Otsu's optimal threshold, so we can see that Otsu's algorithm requires a lot of the computation. In this paper, we improved the amount of computational needs by using estimated Otsu's threshold rather than computing for all the threshold candidates. The proposed algorithm is compared with the original one in computation amount and accuracy. we confirm that the proposed algorithm is about 29 times faster than conventional method on single processor and about 4 times faster than on parallel processing architecture machine.

새로운 hit-and-miss 비변환과 주의 표시분할에의 응용 (A new hit-and-miss ratio transform and its application to warning sign segmentation)

  • 오주환;최태영
    • 전자공학회논문지B
    • /
    • 제33B권3호
    • /
    • pp.120-125
    • /
    • 1996
  • A new hit-and-miss ratio transform is introduced as a modified hit-and-miss transform to be robust to noise, which uses a quasi-matching technique based on the fitting ratio functions. And a new gray-level object segmentation algorithm is proposed, which is based on the hit-and-miss ratio transform and threshold decomposition. The proposed segmentation images, and is similarly applicable to segmentation of an object with specific shapes form natural real images.

  • PDF

Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu's Threshold Algorithm

  • Sheng, Dong-Bo;Kim, Sang-Bong;Nguyen, Trong-Hai;Kim, Dae-Hwan;Gao, Tian-Shui;Kim, Hak-Kyeong
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.32-37
    • /
    • 2016
  • This paper proposes two measurement methods for injured rate of fish surface using color image segmentation method based on K-means clustering algorithm and Otsu's threshold algorithm. To do this task, the following steps are done. Firstly, an RGB color image of the fish is obtained by the CCD color camera and then converted from RGB to HSI. Secondly, the S channel is extracted from HSI color space. Thirdly, by applying the K-means clustering algorithm to the HSI color space and applying the Otsu's threshold algorithm to the S channel of HSI color space, the binary images are obtained. Fourthly, morphological processes such as dilation and erosion, etc. are applied to the binary image. Fifthly, to count the number of pixels, the connected-component labeling is adopted and the defined injured rate is gotten by calculating the pixels on the labeled images. Finally, to compare the performances of the proposed two measurement methods based on the K-means clustering algorithm and the Otsu's threshold algorithm, the edge detection of the final binary image after morphological processing is done and matched with the gray image of the original RGB image obtained by CCD camera. The results show that the detected edge of injured part by the K-means clustering algorithm is more close to real injured edge than that by the Otsu' threshold algorithm.

색도 영상분할을 위한 문턱치 결정방법 (Determination of threshold values for color image segmentation)

  • 이병욱
    • 한국통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.869-875
    • /
    • 1996
  • This paper investigates a method for dtermining a threshold value based on the probability distribution function for color image segmentation. Principal components of normalized color is nalyzed and found that there are effective color transforms for outdoor scents. We esplain the functional relationship of the treshold and the probability of a regiona detection, asuming bivarate Gaussian probability density function. Experimental results show that the probability of detection is proportional to the segmented area.

  • PDF

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • 제10권2호
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

의료 영상을 이용한 인체 역학적 구조물 특징 추출 및 영상 분할 (Feature Extraction and Image Segmentation of Mechanical Structures from Human Medical Images)

  • 호동수;김성현;김도일;서태석;최보영;김의녕;이진희;이형구
    • 한국의학물리학회지:의학물리
    • /
    • 제15권2호
    • /
    • pp.112-119
    • /
    • 2004
  • 인체에 대한 표준데이터를 사용하지 않고 실제 한국인의 의료 영상 데이터를 사용하여 인체 모델을 만들고자 하였다. 먼저 CT와 MRI를 통해 획득한 인체의 의료영상에 대한 특징을 분석하였다. 인체의 해부학적인 구성요소에 대해 CT는 gray level로 MR 영상은 펄스시퀀스 별로 분석하여 특징을 추출하였다. 해부학적 구성요소의 특징을 바탕으로 인체 각 부위별로 영상을 얻기 위해 CT와 MR 영상에 대해 영상분할을 수행하였다. 인체의 부위 중 특히 인체의 네 가지 인체 역학적 구조물인 골조직, 근육, 인대, 건 부위를 CT와 MR 영상을 이용하여 구별하였다. 이미지 분할 방법에는 일반적으로 많이 사용되고 있는 경계선 검출(Edge detection), 영역 선택(Region Growing), 문턱치(Intensity Threshold) 방법 등을 선택하여 인체별로 가장 적합한 알고리듬을 적용시켰다. Head/Neck 부위에 대한 영상 분할 결과를 인체 역학적 구성요소별로 3차원 영상으로 재구성하였다.

  • PDF

동영상 컷 검출을 위한 가변형 동적 임계값 기법 (Variable Dynamic Threshold Method for Video Cut Detection)

  • 염성주;김우생
    • 한국통신학회논문지
    • /
    • 제27권4A호
    • /
    • pp.356-363
    • /
    • 2002
  • 컷 검출은 내용기반 검색에 필요한 인덱싱을 위해 수행되어야 하는 기초 작업으로 이를 위한 매우 다양한 기법들이 제안된바 있다. 그러나 기존의 연구에서는 대부분 고정된 하나의 임계값을 사용하기 때문에 통영상의 종류나 내용에 따라 최적의 임계값을 정해야만 하는 문제점을 갖는다. 본 논문에서는 컷 검출 간격의 확률적인 분포에 따라 임계값을 조절하며 컷이 발생하면 이전 컷과의 간격과 특징값 차이를 다음 컷 검출을 위한 임계값 설정에 반영하는 가변형 동적 임계값 방법을 제안한다. 이를 위해 임계값 조절에 필요한 인자 값들을 실행시간에 구하는 방법과 이를 사용한 컷 검출 알고리즘을 제시한다. 또한 실험을 통해 제안하는 방법이 기존의 방법에 비해 오 검출율을 줄일 수 있어 효율적임을 보인다.