• Title/Summary/Keyword: Threshold runoff

Search Result 50, Processing Time 0.03 seconds

Extreme drought analysis using Natural drought index and Gi∗ statistic

  • Tuong, Vo Quang;So, Jae-Min;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.124-124
    • /
    • 2020
  • This study proposes a framework to evaluate extreme drought using the natural drought index and hot spot analysis. The study area was South Korea. Data were used from 59 automatic synoptic observing system stations. The variable infiltration capacity model was used for the period from 1981 to 2016. The natural drought index was constructed from precipitation, runoff and soil moisture data, which reflect the water cycle. The average interval, duration and severity of extreme drought events were determined following Run theory. The most extreme drought period occurred in 2014-2016, with 46 of 59 weather stations exhibition drought conditions and 78% exhibition extreme drought conditions. The Inje and Seosan station exhibited the longest drought duration of 6 months, and the most severe drought was 5 times higher than the extreme drought severity threshold. The hot spot analysis was used to explore the extreme drought conditions and showed an increasing trend in the middle and northeastern parts of South Korea. Overall, this study provides water resource managers with essential information about locations and significant trends of extreme drought.

  • PDF

Estimation and evaluation on the return period of flash flood for small mountainous watersheds in the Han River basin (한강유역 산지소하천의 돌발홍수 재현기간 산정 및 평가)

  • Kim, Hwa-Yeon;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • The objectives of this study are to estimate the return period of flash flood and evaluate its appropriateness based on the actual observation events for small mountainous watersheds in the Han River basin. For these goals, Flash Flood Guidance (FFG) was estimated from 1-hr duration Threshold Runoff (TR) and Saturation Deficit (SD) of soil moisture which was derived from Sejong University Rainfall Runoff (SURR) model. Then, the return period of flash flood was calculated by comparing the rainfall quantile to the 1-hr duration rainfall that exceeded the FFG during the past period (2002-2010). Moreover, the appropriateness of the estimated return period of flash flood was evaluated by using the observation events from 2011 to 2016. The results of the return period of flash flood ranged from 1.1 to 19.9 years with a mean and a standard deviation of 1.6 and 1.1 years, respectively. Also, the result of the appropriateness indicated that 83% of the return periods derived from observation events were within the return period of flash flood range. Therefore, the estimated return period of flash flood could be considered as highly appropriate.

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Analysis of bifurcation characteristics for the Seolmacheon experimental catchment based on variable scale of source basin (수원 유역의 변동성 규모를 기반으로 한 설마천 시험유역의 분기 특성 해석)

  • Kim, Joo-Cheol;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.289-299
    • /
    • 2021
  • This study analyzes bifurcation characteristics of the Seolmacheon experimental catchment by extracting the shape variation of channel network due to variable scale of source basin or threshold area. As the area of source basin decreases, a bifurcation process of channel network occurs within the basin of interest, resulting in the elongation of channel network (increase of total channel length) as well as the expansion of channel network (increase of the source number). In the former case, the elongation of channel reaches overwhelms the generation of sources, whereas, in the latter case, the drainage path network tends to fulfill the inner space of the basin of interest reflecting the opposite trend. Therefore, scale invariance of natural channel network could be expressed to be a balanced geomorphologic feature between the elongation of channel network and the expansion of channel network due to decrease of source basin scale. The bifurcation structure of the Seolmacheon experimental catchment can be characterized by the coexistence of the elongation and scale invariance of channel network, and thus a further study is required to find out which factor is more crucial to rainfall transformation into runoff.

Estimation of Threshold Runoff for Flash Flood Prediction (돌발홍수 예측을 위한 한계유량 산정)

  • Kim, Dong-Phil;Kim, Joo-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.319-319
    • /
    • 2012
  • 최근 GIS의 발달로 지리정보를 정확하게 분석한 후 각종 수리 해석에 활발히 적용되고 있다. 수문지형학(Hydrogeomorphology)은 Rodriguez-Iturbe(1971)가 유역의 지형학적 인자를 기초로 하여 순간단위도를 유도하는 방법을 제시하는 것을 시작으로 Rodriguez-Iturbe와 Gonzalez-Sanabria(1982)가 지형학적 순간단위유량도(GIUH, Geomorphologic Instantaneous Unit Hydrograph) 매개변수와 유효우량만으로 함수를 표시하는 지형기후학적 순간단위유량도(GcIUH, Geomorphoclimatic Instantaneous Unit Hydrograph)를 유도하여 오늘날까지 발전해 오고 있다. GIS를 활용한 돌발홍수 및 지형학적 지형 기후학적 순간단위도 유도 및 한계유출량에 관한 연구에서 Sweeney(1992)는 돌발홍수능의 표준적인 산정 알고리즘을 제시하였고, Carpenter 등(1999)은 GIS와 연계하여 돌발홍수능을 산정하는데 중요한 한계유출량 산정방법에 관해 연구하였으며, 국내에서는 김운태 등(2002)은 GIS를 이용한 미소유역 규모의 한계유출량 산정 시스템을 개발한 바 있으며, 황보종구(2007)는 국내 유역에 적합한 GcIUH 산정방안에 관한 연구를 수행한 바 있다. 본 연구에서는 한국건설기술연구원에서 1995년부터 운영해 온 설마천 유역에 대하여 GIS 기법을 활용하여 강우-유출 해석시 GcIUH의 매개변수를 산정하여 유역에 적합한 돌발홍수 기준우량을 산정하는 것을 목적으로 하였다. GIS 기법의 적용결과를 통해 산정된 설마천 유역의 지형학적 특성은 <표 1>과 다음과 같다. 한편, 돌발홍수의 개념에서 한계유출량( )은 소하천의 제방을 월류하기 시작하여 홍수를 일으키기 시작할 때의 유효우량으로 정의되며, 유역전반에 걸쳐 균등하게 내리는 단위유효우량으로 인해 발생하는 직접유출 수문곡선이므로 제방이 가득 찬 상태의 유량 즉, 제방이 월류하기 시작할 때의 유량은 등류상태의 흐름을 해석하는 Manning의 공식으로부터 산정할 수 있으며(Chow et al., 1988), 설마천 유역의 경우 50년 빈도 홍수량에 해당하는 수위와 한계유량을 산정하였다. 향후 2011년 홍수 분석을 통해 한계유량 및 기준우량의 적합성을 평가하고 이를 바탕으로 설마천 유역의 돌발홍수예측을 위한 기준우량의 산정 등을 통해 산지 특성을 고려한 돌발홍수예측시스템 프로토타입을 개발하고자 한다.

  • PDF

Parameter Estimation of Water Balance Analysis Method and Recharge Calculation Using Groundwater Levels (지하수위를 이용한 물수지분석법의 매개변수추정과 함양량산정)

  • An, Jung-Gi;Choi, Mu-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.299-311
    • /
    • 2006
  • In this paper it is outlined the methodology of estimating the parameters of water balance analysis method for calculating recharge, using ground water level rises in monitoring well when values of specific yield of aquifer are not available. This methodology is applied for two monitoring wells of the case study area in northern area of the Jeiu Island. A water balance of soil layer of plant rooting zone is computed on a daily basis in the following manner. Diect runoff is estimated by using SCS method. Potential evapotranspiration calculated with Penman-Monteith equation is multiplied by crop coefficients($K_c$) and water stress coefficient to compute actual evapotranspiration(AET). Daily runoff and AET is subtracted from the rainfall plus the soil water storage of the previous day. Soil water remaining above soil water retention capacity(SWRC) is assumed to be recharge. Parameters such as the SCS curve number, SWRC and Kc are estimated from a linear relationship between water level rise and recharge for rainfall events. The upper threshold value of specific yield($n_m$) at the monitoring well location is derived from the relationship between rainfall and the resulting water level rise. The specific yield($n_c$) and the coefficient of determination ($R^2$) are calculated from a linear relationship between observed water level rise and calculated recharge for the different simulations. A set of parameter values with maximum value of $R^2$ is selected among parameter values with calculated specific yield($n_c$) less than the upper threshold value of specific yield($n_m$). Results applied for two monitoring wells show that the 81% of variance of the observed water level rises are explained by calculated recharge with the estimated parameters. It is shown that the data of groundwater level is useful in estimating the parameter of water balance analysis method for calculating recharge.

Projecting future hydrological and ecological droughts with the climate and land use scenarios over the Korean peninsula (기후 및 토지이용 변화 시나리오 기반 한반도 미래 수문학적 및 생태학적 가뭄 전망)

  • Lee, Jaehyeong;Kim, Yeonjoo;Chae, Yeora
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.427-436
    • /
    • 2020
  • It is uncertain how global climate change will influence future drought characteristics over the Korean peninsula. This study aims to project the future droughts using climate change and land use change scenarios over the Korean peninsula with the land surface modeling system, i.e., Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro). The Representative Concentration Pathways (RCPs) 2.6 and 8.5 are used as future climate scenarios and the Shared Socio-economic Pathways (SSPs), specifically SSP2, is adopted for the land use scenario. The using Threshold Level Method (TLM), we identify future hydrological and ecological drought events with runoff and Net Primary Productivity (NPP), respectively, and assess drought characteristics of durations and intensities in different scenarios. Results show that the duration of drought is longer over RCP2.6-SSP2 for near future (2031-2050) and RCP8.5-SSP2 (2080-2099) for the far future for hydrological drought. On the other hand, RCP2.6-SSP2 for the far future and RCP8.5-SSP2 for the near future show longer duration for ecological drought. In addition, the drought intensities in both hydrological and ecological drought show different characteristics with the drought duration. The intensity of the hydrological droughts was greatly affected by threshold level methods and RCP2.6-SSP2 for far future shows the severest intensity. However, for ecological drought, the difference of the intensity among the threshold level is not significant and RCP2.6-SSP2 for near future and RCP2.6-SSP2 for near future show the severest intensity. This study suggests a possible future drought characteristics is in the Korea peninsula using combined climate and land use changes, which will help the community to understand and manage the future drought risks.

The Application of Aluminum Coagulant for the Improvement of Water Quality in Three Recreational Ponds (알루미늄 응집제를 사용한 호수수질 개선 사례 연구)

  • Kang, Phil-Goo;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.447-454
    • /
    • 2003
  • Aluminum coagulant was applied to two eutrophic lakes (Lake Sukchon, in Seoul, and a pond on the campus of Kangwon National University), to precipitate suspended particles and phosphate from the water column. Aluminum sulfate (alum) was used for seven treatments and polyaluminum chloride (PAC) was used for one treatment. The effect of treatment varied depending on the dose of alumium coagulant. Particles and phosphate were completely precipitated from the water column with a dose of 10.0 mgAl/l. Partial removal was observed at doses of 3.3 and 1.8 mgAl/l, but not at 0.45 mgAl/l. Therefore, coagulant should be applied at a dose over the threshold in order to remove particles effectively, which seems to be between 1.8 and 10.0 mgAl/l. The length of treatment effect was determined by new inputs of nutrients and particles from external sources. Renewal of pond water by stream water caused recovery of algal growth in Lake Sukchon, and rainfall runoff and ground water pumping caused a return of turbid water in the campus pond. During treatment there was no sign of decreasing pH, or harmful effects on fish or mussels. Aluminum coagulant may be an economically feasible alternative for water quality improvement when the external control of pollutant sources is difficult. However, repeated application is required when there is a renewal of lake water or new input of nutrients.

Analysis on Characteristics of Orographic Effect about the Rainfall Using Radar Data: A Case Study on Chungju Dam Basin (레이더 자료를 이용한 호우의 산지효과 특성 분석: 충주댐 유역을 대상으로)

  • Ku, Jung Mo;Ro, Yonghun;Kim, Kyoungjun;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.393-407
    • /
    • 2015
  • This study analyzed the characteristics of orographic effect using radar data for the Chungju dam basin. First, independent rainfall events were selected by applying the IETD (Interevent Time Definition) and rainfall threshold. Among those independent rainfall events, rather strong events were selected to decide the occurrence condition of orographic effect. Also, the average reflectivity was calculated for the entire period and for the period of storm center, and the change in reflectivity was analyzed by comparing the average reflectivity to that in the mountain area. Important rainfall factors were selected and applied to the logistic regression model to decide the occurrence condition of orographic effect. Summarizing the results is as follows. First, evaluation of the radar data along the passing line of a storm showed the increase of radar reflectivity in the mountain area. Second, the result of logistic regression analysis showed that the orographic effect in the Chungju Dam Basin mostly occurred when the rainfall intensity was higher than 4 mm/hr, the storm velocity was lower than 4 km/hr, and the approach angle was $90^{\circ}{\pm}5^{\circ}$.

Development of Drought Index based on Streamflow for Monitoring Hydrological Drought (수문학적 가뭄감시를 위한 하천유량 기반 가뭄지수 개발)

  • Yoo, Jiyoung;Kim, Tae-Woong;Kim, Jeong-Yup;Moon, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.669-680
    • /
    • 2017
  • This study evaluated the consistency of the standard flow to forecast low-flow based on various drought indices. The data used in this study were streamflow data at the Gurye2 station located in the Seomjin River and the Angang station located in the Hyeongsan River, as well as rainfall data of nearby weather stations (Namwon and Pohang). Using streamflow data, the streamflow accumulation drought index (SADI) was developed in this study to represent the hydrological drought condition. For SADI calculations, the threshold of drought was determined by a Change-Point analysis of the flow pattern and a reduction factor was estimated based on the kernel density function. Standardized runoff index (SRI) and standardized precipitation index (SPI) were also calculated to compared with the SADI. SRI and SPI were calculated for the 30-, 90-, 180-, and 270-day period and then an ROC curve analysis was performed to determine the appropriate time-period which has the highest consistency with the standard flow. The result of ROC curve analysis indicated that for the Seomjin River-Gurye2 station SADI_C3, SRI30, SADI_C1, SADI_C2, and SPI90 were confirmed in oder of having high consistency with standard flow under the attention stage and for the Hyeongsan River-Angang station, SADI_C3, SADI_C1, SPI270, SRI30, and SADI_C2 have order of high consistency with standard flow under the attention stage.