• Title/Summary/Keyword: Threshold concentration

Search Result 465, Processing Time 0.028 seconds

Analysis on I-V of DGMOSFET for Device Parameters (소자파라미터에 대한 DGMOSFET의 전류-전압 분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Jeong, Dong-Soo;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.709-712
    • /
    • 2012
  • In this paper, current-voltage have been considered for DGMOSFET, using the analytical model. The Possion equation is used to analytical. Threshold voltage is defined as top gate voltage when drain current is $10^{-7}A$. Investigated current-voltage characteristics of channel length changed length of channel from 20nm to 100nm. Also, The changes of current-voltage have been investigated for various channel thickness and doping concentration using this model, given that these parameters are very important in design of DGMOSFET. The deviation of conduction path and the influence of conduction path on current-voltage have been considered according to the dimensional parameters of DGMOSFET.

  • PDF

A Study on Poly-Si TFT characteristics with string structure for 3D SONOS NAND Flash Memory Cell (3차원 SONOS 낸드 플래쉬 메모리 셀 적용을 위한 String 형태의 폴리실리콘 박막형 트랜지스터의 특성 연구)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.7-11
    • /
    • 2017
  • In this paper, we have studied the characteristics of NAND Flash memory in SONOS Poly-Si Thin Film Transistor (Poly-Si TFT) device. Source/drain junctions(S/D) of cells were not implanted and selective transistors were located in the end of cells. We found the optimum conditions of process by means of the estimation for the doping concentration of channel and source/drain of selective transistor. As the doping concentration was increased, the channel current was increased and the characteristic of erase was improved. It was believed that the improvement of erase characteristic was probably due to the higher channel potential induced by GIDL current at the abrupt junction. In the condition of process optimum, program windows of threshold voltages were about 2.5V after writing and erasing. In addition, it was obtained that the swing value of poly Si TFT and the reliability by bake were enhanced by increasing process temperature of tunnel oxide.

Effects of metal contacts and doping for high-performance field-effect transistor based on tungsten diselenide (WSe2)

  • Jo, Seo-Hyeon;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.294.1-294.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with two-dimensional layered structure, such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are considered attractive materials for future semiconductor devices due to its relatively superior electrical, optical, and mechanical properties. Their excellent scalability down to a monolayer based on the van der Waals layered structure without surface dangling bonds makes semiconductor devices based on TMD free from short channel effect. In comparison to the widely studied transistor based on MoS2, researchs focusing on WSe2 transistor are still limited. WSe2 is more resistant to oxidation in humid ambient condition and relatively air-stable than sulphides such as MoS2. These properties of WSe2 provide potential to fabricate high-performance filed-effect transistor if outstanding electronic characteristics can be achieved by suitable metal contacts and doping phenomenon. Here, we demonstrate the effect of two different metal contacts (titanium and platinum) in field-effect transistor based on WSe2, which regulate electronic characteristics of device by controlling the effective barreier height of the metal-semiconductor junction. Electronic properties of WSe2 transistor were systematically investigated through monitoring of threshold voltage shift, carrier concentration difference, on-current ratio, and field-effect mobility ratio with two different metal contacts. Additionally, performance of transistor based on WSe2 is further enhanced through reliable and controllable n-type doping method of WSe2 by triphenylphosphine (PPh3), which activates the doping phenomenon by thermal annealing process and adjust the doping level by controlling the doping concentration of PPh3. The doping level is controlled in the non-degenerate regime, where performance parameters of PPh3 doped WSe2 transistor can be optimized.

  • PDF

A Study on the Reduction of Reaction Mechanism for the Ignition of Dimethyl Ether (디메틸 에테르 착화에 관한 반응기구 축소 연구)

  • Ryu, Bong-Woo;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The numerical analysis of the reduction of reaction mechanism for the ignition of dimethyl ether (DME) was performed. On the basis of a detailed reaction mechanism involving 79 species and 351 reactions, the peak molar concentration and sensitivity analysis were conducted in a homogeneous reactor model. The reduced reaction mechanism involving 44 species and 166 reactions at the threshold value $7.5{\times}10^{-5}$ of the molar peak concentration was established by comparing the ignition delays the reduced mechanism with those the detailed mechanism. The predicted results of the reduced mechanism applied to the single-zone homogeneous charge compression ignition (HCCI) engine model were in agreement with those of the detailed mechanism. Therefore, this reduced mechanism can be used to accurately simulate the ignition and combustion process of compression ignition engine using DME fuel.

Glutathione is the Major Defensive Mechanism against Oxidative Stress in Human Embryonic Stem Cell

  • 이건섭;이영재;김은영;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.78-78
    • /
    • 2003
  • Embryonic stem (ES) cells, derived from preimplantation embryo, are able to differentiate into various types of cells consisting the whole body, or pluripotency. In contrast, terminally differentiated cells do not usually alter their nature but frequently die or transform if they are exposed to inappropriate external stimulations. In addition to the plasticity, ES cells are expected to be different from terminally differentiated cells in very many ways, such as patterns of gene expressions, ability and response of the cells in confronting environmental stimulations, metabolism, and growth rate. As a model system to differentiate these two types of cells, human ES cells (MB03) and terminally differentiated cells (HeLa), we examined the ability of these two types of cells in confronting a severe oxidative insult, that is $H_2O$$_2$. Approximately 1$\times$10$^4$ cells were plated in 96 well plate and serum starved for overnight. The conditioned cells were exposed to a various concentration of $H_2O$$_2$ fur 24 hrs and loaded with neutral red (50$\mu\textrm{g}$/ml) for 4 hrs, washed with PBS for 2 min three times, and entrapped dye was dissolved out using acetic ethanol. Cytotoxicity was determined by reading the amount of dye in the medium using microplate reader. equipped with 575 nm filter. Relative amount of the dye entrapped within MB03 or HeLa were not significantly different when cells were exposed up to 0.4 mM $H_2O$$_2$. However, this sharply decreased down to 0.12% in HeLa cells when the cells were exposed to 0.8 mM $H_2O$$_2$, while it was approximately 54% in MB03 suggesting that this concentration of $H_2O$$_2$ is the defensive threshold for HeLa cells. The resistance to oxidative stimulation reversed, however, when cells were co-treated with BSO (L-buthionine- 〔S, R〕-sulfoximine) which chelates intracellular GSH. This result suggests that cellular GSH is the major defensive mechanism of human ES cells. Induction of enzymes involved in GSH metabolism and type of cell death is currently being studied.

  • PDF

Effect of Monosodium Glutamate on the Taste Response of Chorda Tympani Nerve of Cat (Monosodium Glutamate가 고양이 고색신경의 미각반응에 미치는 영향)

  • Hong, Hae-Kyung;Lee, Hyun-Duck;Lee, Cherl-Ho;Hong, Seung-Kil
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 1991
  • The nerve impulse pattern of Chorda tympani(CT) of cat was tested with Monosodium glutamate(MSG) solutions as well as some basic taste substances applied on the tongue of cat. The effect of MSG applied in the tongue prior to the stimulation of other taste substances was also investigated. The response impulse frequency of CT of cat was changed by the kind and concentration of taste substances. The response to citric acid was the highest among the tested substances, NaCl, KCl and MSG showed similar responses. When different concentrations of MSG were applied on the tongue prior to other substances, the response to NaCl increased with the maximum response at the MSG concentration of 0.02 M. The response to sucrose tended to be reduced, but the response to citric acid was distinctly supressed by the previous MSG stimulation. These results were well consistent with the sensory evaluation on the effect of MSG to some basic taste substances. previously reported by the authors.

  • PDF

Development of a real-time PCR method for detection and quantification of the parasitic protozoan Perkinsus olseni

  • Gajamange, Dinesh;Yoon, Jong-Man;Park, Kyung-Il
    • The Korean Journal of Malacology
    • /
    • v.27 no.4
    • /
    • pp.387-393
    • /
    • 2011
  • The objective of this study was to develop a real-time PCR method for the rapid detection and quantification of the protozoan pathogen Perkinsus olseni using a TaqMan probe. For the standard, genomic DNA was extracted from $10^5$ in vitro-cultured P. olseni trophozoites, and then 10-fold serial dilutions to the level of a single cell were prepared. To test the reliability of the technique, triplicates of genomic DNA were extracted from $5{\times}10^4$ cells and 10-fold serial dilutions to the level of 5 cells were prepared. The standards and samples were analyzed in duplicate using an $Exicycler^{TM}$ 96 real-time quantitative thermal block. For quantification, the threshold cycle ($C_T$) values of samples were compared with those obtained from standard dilutions. There was a strong linear relationship between the $C_T$ value and the log concentration of cells in the standard ($r^2$ = 0.996). Detection of DNA at a concentration as low as the equivalent of a single cell showed that the assay was sensitive enough to detect a single cell of P. olseni. The estimated number of P. olseni cells was similar to the original cell concentrations, indicating the reliability of P. olseni quantification by real-time PCR. Accordingly, the designed primers and probe may be used for the rapid detection and quantification of P. olseni from clam tissue, environmental water, and sediment samples.

Indoor air quality and ventilation requirement in residential buildings: A case study of Tehran, Iran

  • Ataei, Abtin;Nowrouzi, Ali;Choi, Jun-Ki
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.143-153
    • /
    • 2015
  • The ventilation system is a key device to ensure both healthful indoor air quality (IAQ) and thermal comfort in buildings. The ventilation system should make the IAQ meet the standards such as ASHRAE 62. This study deals with a new approach to modeling the ventilation and IAQ requirement in residential buildings. In that approach, Elite software is used to calculate the air supply volume, and CONTAM model as a multi-zone and contaminant dispersal model is employed to estimate the contaminants' concentrations. Amongst various contaminants existing in the residential buildings, two main contaminates of carbon dioxide ($CO_2$) and carbon monoxide (CO) were considered. CO and $CO_2$ are generated mainly from combustion sources such as gas cooking and heating oven. In addition to the mentioned sources, $CO_2$ is generated from occupants' respirations. To show how that approach works, a sample house with the area of $80m^2$ located in Tehran was considered as an illustrative case study. The results showed that $CO_2$ concentration in the winter was higher than the acceptable level. Therefore, the air change rate (ACH) of 4.2 was required to lower the $CO_2$ concentration below the air quality threshold in the living room, and in the bedrooms, the rate of ventilation volume should be 11.2 ACH.

Norovirus Quantification in Oysters Crassostrea gigas Collected from Tongyeoung, Korea (통영시 연안의 양식굴(Crassostrea gigas)에서 검출된 노로바이러스의 정량분석)

  • Shin, Soon Bum;Oh, Eun-Gyoung;Lee, Hee-Jung;Kim, Yeon Kye;Lee, Tae Seek;Kim, Ji-Hoe
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • Norovirus (NoV) is a major cause of food poisoning outbreaks in Korea. Most NoV outbreaks originate from environmental contamination, but bivalves such as oysters are also important vectors. Oyster Crassostrea gigas contamination by NoV has been reported in Korea, but no quantitative analyses of NoV have been performed. We investigated the NoV concentration in 21 oyster samples from a Korean commercial oyster-growing area with confirmed fecal contamination from January to December 2012, using real-time reverse transcription-polymerase chain reaction. Additionally, we assessed the NoV concentration after heating to investigate the effects of heat treatment on NoV-infected oysters. In NoV-positive samples, the cycle threshold (Ct) values were 37.43-39.41 and 36.77-39.30, while viral concentrations were $8.97{\times}10^2-2.24{\times}10^2$ and $3.05{\times}10^2-7.47{\times}10^1$ copies/g for genogroups I and II, respectively. After heat treatment, NoV genogroup I decreased by 83.4%, 88.0%, 89.4% and 100% at $60^{\circ}C$, $68^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$, respectively, for 15 min, while genogroup II respectively decreased by 67.3%, 76.3%, 80.1%, and 89.8% under the same conditions.

Characteristics of Phosphorus Adsorption of Acidic, Calcareous, and Plastic Film House Soils

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.789-794
    • /
    • 2016
  • Continuous excessive application of phosphorus (P) fertilizer and manure in plastic film house soils can lead to an accumulation of P in soils. The understanding of P sorption by soils is important for fertilizer management. In this study, 9 samples were collected for acidic and calcareous soils as non-cultivated soil and plastic film house soils as cultivated soil Phosphorus sorption data of acidic soils fit the Langmuir equations, Freundlich equations in calcareous and plastic film house soils. In calcareous and plastic film house soils, the slope of isotherm adsorption changed abruptly, which could be caused P precipitation with $CaCO_3$. The calculated Langmuir adsorption maximum ($S_{max}$) varied from 217 to 1,250, 139 to 1,429, and $714mg\;kg^{-1}$ for acidic soils, calcareous soils, and plastic film house soils with low available phosphate concentration, respectively. From this result, maximum P adsorption by the Langmuir equation could be regarded as threshold of P concentration to induce the phosphate precipitation in soil. Phosphate-sorption values estimated from one-point isotherm for acidic and calcareous soils as non-cultivated soils were comparable with the $S_{max}$ values calculated from the Langmuir isotherm.