• Title/Summary/Keyword: Threshold Train Module

Search Result 2, Processing Time 0.017 seconds

Semi-supervised SAR Image Classification with Threshold Learning Module (임계값 학습 모듈을 적용한 준지도 SAR 이미지 분류)

  • Jae-Jun Do;Sunok Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.177-187
    • /
    • 2023
  • Semi-supervised learning (SSL) is an effective approach to training models using a small amount of labeled data and a larger amount of unlabeled data. However, many papers in the field use a fixed threshold when applying pseudo-labels without considering the feature-wise differences among images of different classes. In this paper, we propose a SSL method for synthetic aperture radar (SAR) image classification that applies different thresholds for each class instead of using a single fixed threshold for all classes. We propose a threshold learning module into the model, considering the differences in feature distributions among classes, to dynamically learn thresholds for each class. We compare the application of a SSL SAR image classification method using different thresholds and examined the advantages of employing class-specific thresholds.

A Dynamic Three Dimensional Neuro System with Multi-Discriminator (다중 판별자를 가지는 동적 삼차원 뉴로 시스템)

  • Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.7
    • /
    • pp.585-594
    • /
    • 2007
  • The back propagation algorithm took a long time to learn the input patterns and was difficult to train the additional or repeated learning patterns. So Aleksander proposed the binary neural network which could overcome the disadvantages of BP Network. But it had the limitation of repeated learning and was impossible to extract a generalized pattern. In this paper, we proposed a dynamic 3 dimensional Neuro System which was consisted of a learning network which was based on weightless neural network and a feedback module which could accumulate the characteristic. The proposed system was enable to train additional and repeated patterns. Also it could be produced a generalized pattern by putting a proper threshold into each learning-net's discriminator which was resulted from learning procedures. And then we reused the generalized pattern to elevate the recognition rate. In the last processing step to decide right category, we used maximum response detector. We experimented using the MNIST database of NIST and got 99.3% of right recognition rate for training data.