• 제목/요약/키워드: Threshing machine

검색결과 12건 처리시간 0.026초

독립구동방식의 콩 탈곡기 시스템 개발 (Development of The Bean Threshing System using Independent Driving)

  • 장봉춘;김성철
    • 한국산학기술학회논문지
    • /
    • 제14권9호
    • /
    • pp.4124-4129
    • /
    • 2013
  • 본 연구는 무한궤도와 엔진 및 유압장치를 두어서 독립적으로 구동할 수 있는 탈곡기를 3차원 설계후 시제품을 제작하는 데 목적을 두었다. 탈곡기의 기능을 충실히 수행하기 위해서 탈곡통에 칼날을 나선형으로 배치하여 탈곡성능이 향상되게 하였다. 또한 뒤쪽에 배출구를 두어서 잔여부산물들이 적채되는 기존의 탈곡기 문제를 해결하였다. 부산물들이 콩과 섞여서 배출되지 않게 하려고 경사진 벨트를 내부에 두어 부산물들만 직접 송풍하도록 설계하였다. 완전히 정선된 콩만이 스크류 축을 통해서 통에 적재되면 송풍팬을 통해 배출관 파이프를 따라 이동하여 최종적으로 포장자루에 바로 담을 수 있도록 편의성을 고려하여 설계하였다. 본 독립구동방식의 콩 탈곡기 시스템은 산학협력을 통하여 국산화한 기술로서 국내 최초의 독립구동 방식의 자주형 콩 탈곡기 시스템이다.

원추형(圓錐型) 탈곡기(脱糓機)에 관(關)한 연구(硏究) (Study on Cone Type Thresher (I))

  • 이승규
    • Journal of Biosystems Engineering
    • /
    • 제6권1호
    • /
    • pp.48-59
    • /
    • 1981
  • The major limiting factor on the determination of combine capacity is the frequent occurence of clogging over the some parts of machine when the crop is wet in the case of Japanese self-feeding type combine. And in the case of American conventional combine having big separating parts, the great grain loss and damage occur when the machine is used for rice harvesting. This experiment was carried out to develop the new type threshing and separating equipment. Proto-type thresher which consist of a conical threshing drum and a conical separating sieve rotating around the threshing cone was constructed and tested. In the case of 800 rpm of threshing cone speed, average threshing loss was below 1 percent, separating loss was about 1 percent, grain damage was about 0.4 percent, and average total power required was about 2.6 PS. This design has some problems such as higher power required or wrapping problems under the conditions of feeding long damp straw. But, compared with the conventional combine or thresher, this machine certainly has some potentials for this approach to combine development. The crop feed rate must be increased through improvement of the feeding portion of the threshing cone. And it is required to investigate further about some parameters causing wrapping phenomena.

  • PDF

Development of Threshing Machine for Shatter-Resistant Sesame

  • Lee, Kyou Seung;Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • 제40권2호
    • /
    • pp.110-114
    • /
    • 2015
  • Purpose: A threshing machine for shatter-resistant sesame was designed and developed in this study. Methods: Two types of sesame (shatter-resistant and conventional) were tested using the developed sesame threshing system. Three types of serrated bars were designed and evaluated through performance tests, in terms of the ratio of unthreshed sesame. Results: In the case of conventional sesame, the ratio of unthreshed sesame did not show any difference with bar type or cylinder rotation speed. For shatter-resistant sesame, however, the ratio of unthreshed sesame decreased with increased cylinder rotating speed for all three types of bar. Conclusions: These results are useful for the construction and utilization of an efficient threshing harvester. The type-L bar showed the best result in the energy equation.

보리의 수발아정도 및 탈곡방법이 종자활력 관련 형질에 미치는 영향 (Effects of Sprouting Degree and Threshing Methods on Germination and Seedling Vigor in Barley)

  • 이은섭;천종은
    • 한국작물학회지
    • /
    • 제36권1호
    • /
    • pp.65-69
    • /
    • 1991
  • 과맥에서 종자활력의 저하요인을 구명하고자 과맥 2계통(피, 과 isogenic line포함) 및 피맥 1품종의 종자의 수발아를 유도하여 손과 기계탈곡(700 rpm ) 한 종자를 이용하였다. 1. 수발아된 종자를 손 탈곡하여 배부분의 손상이 없어서 발아세, 발아율, TTC치은 수발아 정도에 따른 차이가 적었으나, 출아력은 수발아가 클수록 감소되었다. 2. 수발아된 종자는 기계탈곡시 배의 부분적인 손상이 관찰되었으며, 손 탈곡에 비해서 종자활력에 관계된 형질들이 고도로 유의적인 감소를 가져왔고 효소활력은 크게 증가되었다. 3 손 탈곡구에서 수발아 정도는 효소활력 ( r =0.9 31**, 0.951**) 및 발아력 ( r=0.46*)과 정상관이 있었다.

  • PDF

투입식 탈곡기의 탈곡 및 선별 성능에 관한 연구 (Study on the Threshing and Separating Performanee of the Newly Developed Throw-in Type Thresher)

  • 이승규;정창규김성래
    • 한국농공학회지
    • /
    • 제17권3호
    • /
    • pp.3878-3884
    • /
    • 1975
  • This study was carried out to develop the throw-in type thresher with its size as small as possible. Developing the smallest possible size of the throw-in type thresher has been very important to increase mobility and to reduce the machine price. The thresher that developed for this purpose was tested as to threshing and separation performance for the samples collected in eight catch boxes under the concave while threshing. The amount of grain collected in each compartments was measured and the threshing and separating pattern along the total span of the threshing drum was determined. The performance of separating and threshing units of the test thresher and threshing loss was evaluated by use of the developed grain separating apparatus and the method for measuring the grain separating performance of threshers. The results are summarized as follows; 1. The unthreshed grain (drum losses) and semi-threshed grain did not appeared at all throughout the treatments. 2. When threshed by making use of the developed throw-in type thresher, the threshing grain loss at about 25 per cent grain moisture was about one-half when threshed at about 18 per cent grain moisture. 3. And its grain separating loss in higher feed rate was decreased in comparison with that of lower feed rate. These results suggests that the throw-in type thresher may be suitable for wet threshing and for higher feed rate of threshing. 4. Above 60 per cent of total grain passing through concave fell through the screen within a scant 30 cm from the feeding inlet. This threshing pattern may suggest that major threshing action may be finished before about one third of cylinder length. The required separating load extended over the whole drum span is so defferent that separating elements should be redesigned so as to accomodate this variable pattern of separation load. 5. It was apparent from the experiment that the length of the threshing drum of the throw-in type thresher could be reduced from 1285mm to about 1050mm without increasing grain separation loss greatly.

  • PDF

Separation Characteristic of Shatter Resistant Sesame After Threshing

  • Noh, Hyun Kwon
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.299-303
    • /
    • 2014
  • Purpose: This study set out to develop a machine for separating shatter-resistant sesame after threshing. Methods: Three grades of sieve and different blower speeds were tested for a separation system that had been designed specifically for shatter-resistant sesame. Performance tests were run to evaluate the sieve and blower systems in terms of the sesame separation and loss ratios. Results: Tests of the first separation stage using the sieve system revealed the optimum sieve perforation size to be 5 mm. Tests of the second separation stage using the blower system identified the optimum blower speed as being 220 rpm. The optimum separation and loss ratios, of 96.5% and 3.5%, respectively, were obtained at a blower speed of 220 rpm. Conclusions: These results will be useful for the design, construction, and operation of threshing harvesters. For shatter-resistant sesame, an optimum blower speed of 220 rpm was identified.

탈곡기의 제작동요인이 벼의생탈곡성능에 미치는 영향 (Factors Affecting Wet-Paddy Threshing Performance)

  • 남상일;정창주;류관희
    • Journal of Biosystems Engineering
    • /
    • 제5권1호
    • /
    • pp.1-14
    • /
    • 1980
  • Threshing operation may be one of the most important processes in the paddy post-production system as far as the grain loss and labor requirement are concerned . head-feeding type threshers commercially available now in Korea originally were developed for threshing dry paddy in the range of 15 to 17 % in wet basis. However, threshing wet-paddy with the grain moisture content above 20 % has been strongly recommended, especially for new high-yielding Indica -type varieties ; (1) to reduce high grain loss incurred due to the handling operations, and (2) to prevent the quantitative and qualitative loss of milled -rice when unthreshed grains are rewetted due to the rainfall. The objective of this study were to investigate the adaptability of both a head-feeding type thresher and a throw-in type thresher to wet-paddy , and to find out the possiblilities of improving the components of these threshers threshing. Four varieties, Suweon 264 and Milyang 24 as Tongil sister line varieties, minehikari and Jinhueng as Japonica-type varieties, were used at the different levels of the moisture content of grains. Both the feed rate and the cylinder speed were varied for each material and each machine. The thresher output quality , composition of tailing return, and separating loss were analyzed from the sampels taken at each treatment. A separate experiment for measurement opf the power requirement of the head-feeding type thresher was also performed. The results are summarized as follows : 1. There was a difference in the thresher output quality between rice varieties. In case of wet-paddy threshing at 550 rpm , grains with branchlet and torn heads for the Suweon 264 were 12 % and 7 % of the total output in weight, respectively, and for the Minehikari 4.5 % and 2 % respectively. In case of dry paddy threshing , those for the Suweon 264 were 8 % and 5% , and for the Minehikari 4% and 1% respectively. However, those for the Milyang 23 , which is highly susceptable to shattering, were much lower with 1 % and 0.5% respectively, regardless of the moisture content of the paddy. Therefore, it is desirable to breed rice varieties of the same physical properties as well as to improve a thresher adaptable to all the varieties. Torn heads, which increased with the moisture content of rall the varieties except the Milyang 23 , decreased as the cylinder speed increased, but grains with branchlet didnt decrease. The damaged kernels increased with the cylinder speed. 3. The thresher output quality was not affected much by the feed rate. But grains with branchlet and torn heads increased slightly with the feed rate for the head-feeding type thresher since higher resistance lowered at the cylinder speed. 4. In order to reduce grains with branchlet and torn heads in wet-paddy threshing , it is desirable to improve the head-feeding type thresher by developing a new type of cylinder which to not give excess impact on kernels or a concave which has differenct sizes of holes at different locations along the cylinder. 5. For the head-feeding type thresher, there was a difference in separating loss between the varieties. At the cylinder speed of 600 rpm the separating losses for the Minehikari and the Suweon 264 were 1.2% and 0.6% respectively. The separating loss of the head-feeding type thresher was not affected by the moisture content of paddy while that of the Mini-aged thresher increased with the moisture content. 6. From the analysis of the tailings return , to appeared that the tailings return mechanism didn't function properly because lots of single grains and rubbishes were unnecessarily returned. 7. Adding a vibrating sieve to the head-feeding type thresher could increase the efficiency of separation. Consequently , the tailing return mechanism would function properly since unnecessary return could be educed greatly. 8. The power required for the head-feeding type thresher was not affected by the moisture content of paddy, but the average power increased linearly with the feed rate. The power also increased with the cylinder speed.

  • PDF

경상남도 농촌지역의 농기계손상에 관한 조사연구 (A Study for Injuries due to Agricultural Machines in Kyeongsangnam Province)

  • 김병성;전해정
    • 농촌의학ㆍ지역보건
    • /
    • 제20권1호
    • /
    • pp.15-23
    • /
    • 1995
  • As compared before, agricultural machines are used more commonly instead of animal or manpower in rural areas and the injuries due to those are common. This study was conducted by questionnaire method in order to find out the current status of injuries due to agricultural machines for farmers who was selected from three Gun's in Kyeongsangnam Province. The study subjects were 385 persons in all(210 male persons, 175 female reasons) and the study period was from July through September 1993. The results were as follows; 1. The injury rate due to agricultural machines was high in male(p<0.05), and it was higher in younger age group and higher educated group. 2. The injury occurred high in summer and autumn seasons(77.6%), in the afternoon(60.6%), and during harvest(35.2%). 3. The major injuries were contusion, fracture, amputation in order and the injured sites were arms, legs, and chest in order. 31.7% of the injured farmers had been admitted, and they were treated at hospitals, home, drugstores and health centers in order. 4. The casualty damage was highest by cultivators, and agricultural instruments, threshing machine were followed. Among traumatic injuries concerned with cultivators contusions were most common, and fractures, amputations were followed. In case of agricultural instruments bruises were most common, and incisions, contusion were followed. In case of threshing machines fractures were most common and contusion, bruise were followed.

  • PDF

단옥수수와 초당옥수수 탈곡 시 종자 수분함량과 탈곡방법에 따른 종자 특성 (Characteristics of Sweet and Super Sweet Corn Seeds Shelled at Different Seed Moisture and Threshing Method Conditions)

  • 이석순;윤상희;양승규;홍승범
    • 한국작물학회지
    • /
    • 제51권7호
    • /
    • pp.632-638
    • /
    • 2006
  • 단옥수수와 초당옥수수 종자의 활력을 높일 수 있는 탈곡방법을 알기 위하여 단옥수수($Early\;Sunglow{\times}GCB\;70$)와 초당옥수수($Xtrasweet\;82{\times}Fortune$) 종자의 수분함량을 12, 15, 18, 21%로 건조한 후 손과 전기 탈곡기로 탈곡하여 $25^{\circ}C$ 발아율, cold test에서 출아율, 당 및 전해질 누출, ${\alpha}-amylase$ 활성 등 종자특성을 조사한 결과를 요약하면 다음과 같다. 1. 손 탈곡은 종자수분 함량에 관계없이 기계적 상처가 없었으나 기계 탈곡할 때 종자의 상처를 줄일 수 있는 수분함량은 단옥수수는 $15{\sim}21%$, 초당옥수수는 $12{\sim}21%$이었다. 2. Cold test에서 출아율은 종자수분 함량에 관계없이 손 탈곡한 종자가 기계 탈곡한 종자보다 단옥수수는 $6{\sim}14%$, 초당옥수수는 $9{\sim}18%$ 높았다. 3. 단옥수수는 $25^{\circ}C$ 발아율과 cold test 출아율과 정의 상관이 있었으나 초당옥수수는 관계가 없었다. 단옥수수와 초당옥수수의 cold test에서 출아율은 침종 시 당 누출과는 부의 상관, ${\alpha}-amylase$ 활성과는 정의 상관이 있었다. 4. 기계 탈곡 시 $25^{\circ}C$에서 상처립 비율, 발아율, cold test에서 출아율, 당과 전해질 누출량, ${\alpha}-amylase$ 활성을 고려한 적정 종자수분 함량은 단옥수수는 15%, 초당옥수수는 12%이었다.

자운영 종자생산을 위한 적정 수확시기 구명 (An Optimum Harvest Time for Chinese Milk Vetch (Astragalus sinicus L.) Seed Production)

  • 이병진;최진룡;김상열;오성환;김준환;황운하;안종웅;오병근;구연충
    • 한국작물학회지
    • /
    • 제53권1호
    • /
    • pp.70-74
    • /
    • 2008
  • 자운영 종자 생산을 위한 적정 수확시기를 결정하고자 개화 후 25일부터 5일 간격으로 40일까지 수확한 시험의 결과를 요약하면 아래와 같다. 1. 수확 시기별 자운영 종자 수량은 수확시기가 늦어질수록 증가하는 경향을 보였으며, 개화 후 35일이 가장 많았다. 2. 자운영 종자활력은 개화 후 35일 이후 수확한 것이 90%이상 높았으며 포장에서 자운영 지속재배를 위한 적정환원 시기는 개화 후 35일 이후였다. 3. 자운영 수확 후 발아율은 수확시기에 따른 차이가 인정되지 않았지만 저장기간이 길어질수록 늦게 수확한 것이 발아율이 높았다. 4. 발아율은 $10{\sim}40$일 침종에서 증가하였으며, 40일 이상 침종시 발아율이 급격하게 떨어지는 경향을 보였다. 5, 경실율도 개화 후 수학시기가 늦을수록 증가하는 경향을 보였다. 이상의 결과로 자운영 종자 수확을 위한 적정 수확시기는 개화 후 35일이 적당할 것으로 사료된다.