• Title/Summary/Keyword: Threshing

Search Result 83, Processing Time 0.029 seconds

Design and Construction of a Pick-up Type Pulse Crop Harvester

  • Lee, Ki Yong;Yoo, Soonam;Han, Byung Hee;Choi, Yong;Choi, Il Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.12-22
    • /
    • 2017
  • Purpose: This aim of this study was to develop a pick-up type pulse crop harvester for harvesting cut and dried pulse crop. Methods: The pick-up type pulse crop harvester was designed and constructed. Its specifications and operating performance were investigated. Results: Compared with conventional bean harvesters, the pick-up type pulse crop harvester adopted seven rows of chains with tines to pick-up the cut and dried pulse crop on a flat or ridged field, two transverse threshing drums with steel wire teeth to reduce the threshing speed, and a tilt plate and plastic bucket elevator for conveying clean grain to reduce damage. The threshing speed and the oscillating frequency of the separating and cleaning parts according to crop type and condition could be varied easily to efficiently use engine power and to improve harvesting performance. The harvester showed forward speed ranges of 0 ~ 1.5 m/s during harvesting operation, and 0 ~ 2.5 m/s during road travelling. The pick-up width of the harvester was about 1 m. Conclusions: The pick-up type self-propelled 51.5 kW harvester was designed and constructed to harvest cut and dried pulse crop. The effective field capacity of the harvester was predicted as above 40 a/h.

Influence of Harvest Time, Drying Period and Threshing Force on Mechanical Damage and Germinability of Rye Grains (호밀의 수확시기, 건조일수 및 탈곡기 회전속도가 탈곡종실의 손상립률과 발아율에 미치는 영향)

  • 김석동;하용웅;이성희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.477-482
    • /
    • 1986
  • This trial was carried out to set up a proper drum speed of thresher to minimize the mechanical damage from threshing and thereby to obtain rye seeds possessing higher qualities for seeds. Rye plants were harvested at from 40 to 60 days after heading (DAH) with 5 days intervals and spread out on the field for 0, I, 2, 3 days for drying, respectively. After drying the plants were subjected to threshing at seven steps of drum speed from 400 to 1000 rotation per minute (RPM) of a thresher, drum diam. 18.6cm, teeth length 6cm. At 500 to 600 RPM and from the plants harvested at 55DAH with drying for one or two days, the seeds possessed low grain damage, high germinability over 90%, and field emergence rate over 80%.

  • PDF

A Forward Speed Control of Head-feed Combine Using Continuously Variable V-belt Transmission -Combine Load Characteristics- (V-벨트 무단변속기(無斷變速機)를 이용(利用)한 자탈형(自脫型) 콤바인의 주행속도(走行速度) 제어(制御)(I))

  • Choi, K.H.;Ryu, K.H.;Cho, Y.K.;Park, P.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.2
    • /
    • pp.124-132
    • /
    • 1991
  • This study was carried out to obtain the information needed in the development of forward speed control system and the improvement of combine performance. The effects of variety, grain moisture content and forward speed on the combine load characteristics were investigated through experiments. The results of this study are summarized as follows. 1. A data acquisition system was developed to measure the engine speed and the torques and speeds of the threshing cylinder, dean-grain auger and tailings-return auger. The system consisted of transducers, signal conditioner, interface board and microcomputer. The system accuracy is better than ${\pm}2.3%$ full scale. 2. Linear regression equations were obtained for the torque, speed and power requirement of threshing cylinder for different paddy varieties, grain moisture contents and feed rates. 3. The maximum value of relative frequency for threshing cylinder torque decreased as the increase in feed rate and moisture content. The range of torque fluctuation was 1.2~3.7 and 1.2~1.9 times the average and maximum torque, respectively. The maximum value of power spectrum density (PSD) appeared to be about 11 Hz regardless of paddy variety, grain moisture content and feed rate. 4. The speed of tailings return thrower decreased rapidly at below 900rpm, and it fell to near zero about 3 seconds after that time. When the travelling of combine harvester was stopped immediately after sensing the overload, it took about 7 seconds for a full recovery of the no-load speed of tailings return thrower.

  • PDF

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 -)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, S.K.;Moon, S.D.;Kim, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).

Sorghum Harvesting Using a Head-feeding Type Rice Combine

  • Jun, Hyeon Jong;Choi, Il Su;Kang, Tae Gyoung;Choi, Yong;Choi, Duck Kyu;Lee, Choung Keun;Kim, Sang Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.296-302
    • /
    • 2018
  • Purpose: The aim of this study was to determine appropriate threshing and selection conditions for sorghum harvesting using a rice combine-harvester. Methods: Sorghum harvesting performance was tested using an actual rice combine. Through this test, the grain loss rate and the composition of crops according to the engine and fan speeds of the combine were investigated. Furthermore, the optimal threshing and selection conditions were determined by carrying out a harvest test based on the opening size factor of the concave in a test field. Results: The grain loss rate for the sorghum using a concave ($18{\times}18mm$) of the rice combine was the lowest at 0.1% at a chaffer angle of $40^{\circ}$, engine speed of 2000 rpm, and fan speed of 20 m/s, but the sorting sieve clogged frequently. Furthermore, as the engine speed and fan speed increased, the grain loss rate also increased. The sorghum harvesting test results of the combine according to the concave opening size showed that the grain loss rate was 0.5% at a driving speed of 0.5 m/s, with a concave opening diameter of 13 mm, a chaffer angle of $40^{\circ}$, a concave sieve oscillation frequency of 4.8 Hz, a fan speed of 20 m/s, and an engine speed of 2000 rpm. Conclusions: Findings showed that sorghum could be harvested using a head feeding rice combine.

Feed Rate Control for the Head-Feed Thresher (수급식탈곡기(穗給式脱穀機)의 공급율(供給率) 제어(制御)(II) -제어시스템 설계 및 시뮬레이션-)

  • Choi, Y.S.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.110-122
    • /
    • 1990
  • This study was undertaken to develop the feed rate control system for the head feed thresher by making use of the microprocessor and to evaluate the response of the system to a various threshing conditions. The control unit was composed of one-board microcomputer. The speed of the wet-paddy feeding chain was controlled by dc moter with PI controller. It was used the adaptive control method to maintain the constant feed rate regardless of the fed rice varieties. The sliding type potentiometer was used as the feed rate sensor, which was attached on the sheaf-holding apparatus. The mathematical models of the system components were derived and computer simulation was developed for investigating the parameters affecting on control performance and for estimating the response of the system. A one-board microcomputer-based feed rate control system developed in this study was properly functioned and assessed as adequate for the feed rate control system of the head feed thresher. Based on the simulation for the bundle feed, it was anticipated that the lower setting value of the cylinder speed(RL) is to be set higher than the limiting operational speed. In addition, the higher setting value of the cylinder speed(RH) is to be set lower than the limiting cylinder speed for threshing. The computer simulation for the continuous spread feed showed that the lower the setting value of straw layer thickness(LL) was set, the shorter the correction time. However, if too low LL may be established, the feed rate could not reach to its desired rate.

  • PDF

A Study for Injuries due to Agricultural Machines in Kyeongsangnam Province (경상남도 농촌지역의 농기계손상에 관한 조사연구)

  • Kim, Byung-Sung;Chon, Hae-Jung
    • Journal of agricultural medicine and community health
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 1995
  • As compared before, agricultural machines are used more commonly instead of animal or manpower in rural areas and the injuries due to those are common. This study was conducted by questionnaire method in order to find out the current status of injuries due to agricultural machines for farmers who was selected from three Gun's in Kyeongsangnam Province. The study subjects were 385 persons in all(210 male persons, 175 female reasons) and the study period was from July through September 1993. The results were as follows; 1. The injury rate due to agricultural machines was high in male(p<0.05), and it was higher in younger age group and higher educated group. 2. The injury occurred high in summer and autumn seasons(77.6%), in the afternoon(60.6%), and during harvest(35.2%). 3. The major injuries were contusion, fracture, amputation in order and the injured sites were arms, legs, and chest in order. 31.7% of the injured farmers had been admitted, and they were treated at hospitals, home, drugstores and health centers in order. 4. The casualty damage was highest by cultivators, and agricultural instruments, threshing machine were followed. Among traumatic injuries concerned with cultivators contusions were most common, and fractures, amputations were followed. In case of agricultural instruments bruises were most common, and incisions, contusion were followed. In case of threshing machines fractures were most common and contusion, bruise were followed.

  • PDF

Vibration modelling and structural modification of combine harvester thresher using operational modal analysis and finite element method

  • Zare, Hamed Ghafarzadeh;Maleki, Ali;Rahaghi, Mohsen Irani;Lashgari, Majid
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.33-46
    • /
    • 2019
  • In present study, Operational Modal Analysis (OMA) was employed to carry out the dynamic and vibration analysis of the threshing unit of the combine harvester thresher as a mechanical component. The main study is to find the causes of vibration and to decrease it to enhance the lifetime and efficiency of the threshing unit. By utilizing OMA, structural modal parameters such as mode shapes, natural frequencies, and damping ratio was calculated. The combine harvester was excited by engine to vibrate different parts and accelerometer sensor collected acceleration signals at different speeds, and OMA was utilized by nonparametric and frequency analysis methods to obtain modal parameters while vibrating in real working conditions. Afterwards, finite element model was designed from the thresher and updated using the data obtained from the modal analysis. Using the conducted analyses, it was specified that proximity of the thresher pass frequency to one of the natural frequencies (16.64 Hz) was the most important effect of vibration in the thresher. Modification process of the structure was carried out by increasing mass required for changing the natural frequency location of the first mode to 12.4 Hz in order to reduce resonance and vibration of the thresher.

Effects of Binder-Sheaf Size on Threshing Performance and Load Characteristics of an Auto Feed Thresher (바인더 볏단의 크기가 자동탈곡기(自動脱糓機)의 탈곡성능(脱糓性能) 및 부하특성(負荷特性)에 미치는 영향(影響))

  • Yoo, Soo Nam;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.60-72
    • /
    • 1981
  • This study was carried out to find out the effects of the sheaf size of paddy harvested by the binders on the threshing performance, load characteristics and power requirement of an auto-feed thresher. The results of the study are summarized as follows: 1. The seperating performance of the thresher appeared to be satisfactory for all the sheaf sizes although the amount of rubbishes and empty grains slightly increased with the sheaf size of paddy. 2. There was no significant difference in grain output quality of the thresher among the three sheaf sizes. However, the amount of grains left unthreshed increased with the sheaf size. In the case of the largest sheaf size with the feed rate of 780kg/h, it exceeded the limit set by the national inspection regulations. 3. The position of the feed-chain rail gave a significant effect on the power requirement of the thresher. At the feed rate of 780kg/h, the net power required to convey sheafs through the feed chain was in the range of 0.37 to 0.50 PS for the middle and lowest position of feed-chain rail, and there was no significant difference among the sheaf sizes. At the highest position, however, it appeared that the smallest sheaf required more power than the others. The net power requirements at this position were 1.03, 0.59. 0.65 PS for the smallest, medium and largest sheafs respectively. 4. The torques of both the thresher and the engine shaft increased with the feed rate and were not affected by the sheaf size for the lower two feed rates of 520 and 780kg/h. At the highest feed rate of 1,040 kg/h, however, they were affected by the sheaf size. In this case, the medium sheaf size gave lower values than the others. 5. The variations in the thresher and the engine torque increased with the feed rate and were not affected by the sheaf size for the feed rate of 520kg/h. At the feed rate of 780kg/h, however, they increased with sheaf size. And at the feed rate of 1,040 kg/h, the torque variations increased greatly for all the sheaf sizes due to an over-load operating condition. 6. It appeared that the average and maximum power requirements of the thresher increased with the feed rate. But, there was no significant difference in power requirement among the sheaf sizes for the lower two feed rates. 7. The threshing efficiency of the thresher was in the range of 214-249 kg/ps.h with the feed rates of 520 and 780 kg/h, and it was not affected by both the sheaf size and the feed rate. At the feed rate of 1,040 kg/h, however, it decreased to as low as 171-174 kg/ps.h because of a sudden increase in power requirement. 8. The average power requirements of the engine were slightly higher than those of the thresher due to the slippage of flat belt between the thresher and engine. It appeared that power transmission from the engine to the thresher was maintained properly since slippages were moderately low with the range of 2.78 to 6.51% throughout the tests. 9. The specific fuel consumption of the engine (diesel 8PS) decreased as the feed rate increased. However, there was no significant reduction in specific fuel consumption as the feed rate increased above 780 kg/h.

  • PDF

Characteristics of Sweet and Super Sweet Corn Seeds Shelled at Different Seed Moisture and Threshing Method Conditions (단옥수수와 초당옥수수 탈곡 시 종자 수분함량과 탈곡방법에 따른 종자 특성)

  • Lee, Suk-Soon;Yun, Sang-Hee;Yang, Seung-Kyu;Hong, Seung-Beom
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.7
    • /
    • pp.632-638
    • /
    • 2006
  • Characteristics of sweet (sugary, su) and super sweet (shrunken-2, sh2) corn seeds shelled by different threshing methods at different moisture content status were studied. Hybrid seeds of a su (Early Sunglow ${\times}$ Golden Cross Bantam 70, GCB 70) and a sh2 (Xtrasweet 82 ${\times}$Fortune) were dried to moisture content of 12, 15, 18, and 21%. Hand shelling did not give any mechanical damages to seeds, while an electrical corn thresher gave some visible mechanical damages. The emergence rate of hand shelled seeds was higher than that of machine shelled seeds by $6{\sim}14%$ for a su and by $9{\sim}18%$ for a sh2 hybrid depending on seed moisture contents in cold test. The optimum seed moisture content to reduce mechanical threshing damages and to improve seed quality was 15% for su and 12% for sh2 hybrid seeds. At the optimum seed moisture contents, germination rate at $25^{\circ}C$, emergence rate in the cold test and ${\alpha}-amylase$ activity were highest, while the percentage of damaged seeds and leakage of total sugars and electrolytes in soaking water were minimized.