• Title/Summary/Keyword: Three-phase power converter

Search Result 509, Processing Time 0.028 seconds

Experimental Realization of Matrix Converter Based Induction Motor Drive under Various Abnormal Voltage Conditions

  • Kumar, Vinod;Bansal, Ramesh Chand;Joshi, Raghuveer Raj
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.670-676
    • /
    • 2008
  • While the matrix converter has many advantages that include bi-directional power flow, a size reduction, a long lifetime, and sinusoidal input currents, it is vulnerable to the input voltage disturbances, because it directly exchanges the input voltage to the output voltage. So, in this paper, a critical evaluation of the effect of various abnormal voltage conditions like unbalanced power supply, balanced non-sinusoidal power supply, input voltage sags and short time blackout of power supply on matrix converter fed induction motor drives is presented. The operation under various abnormal conditions has been analyzed. For this, a 230V, 250VA three phase to three phase matrix converter (MC) fed induction motor drive prototype is implemented using DSP based controller and tests have been carried out to evaluate and improve the stability of system under typical abnormal conditions. Digital storage oscilloscope & power quality analyzer are used for experimental observations.

Design of Gate Driver Power Supply for 3-Phase Inverter Using SiC MOSFET (SiC MOSFET를 사용한 3상 인버터용 게이트 드라이버 전원 설계)

  • Lee, Sangyong;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.429-436
    • /
    • 2021
  • The design of a gate driver power supply for a three-phase inverter using a silicon carbide (SiC) MOSFET. The requirements for the power supply circuit of the gate driver for the SiC MOSFET are investigated, and a flyback converter using multiple transformers is used to make the four isolated power supplies. The proposed method has the advantage of easily constructing the power supply circuit in a limited space as compared with a multi-output flyback converter using a single core. The power supply circuit for the three-phase SiC MOSFET inverter for driving an AC motor is designed and implemented. The operation and validity of the implemented circuit are verified through simulations and experiments.

A Three-Phase High Frequency Semi-Controlled Battery Charging Power Converter for Plug-In Hybrid Electric Vehicles

  • Amin, Mahmoud M.;Mohammed, Osama A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.490-498
    • /
    • 2011
  • This paper presents a novel analysis, design, and implementation of a battery charging three-phase high frequency semi-controlled power converter feasible for plug-in hybrid electric vehicles. The main advantages of the proposed topology include high efficiency; due to lower power losses and reduced number of switching elements, high output power density realization, and reduced passive component ratings proportionally to the frequency. Additional advantages also include grid economic utilization by insuring unity power factor operation under different possible conditions and robustness since short-circuit through a leg is not possible. A high but acceptable total harmonic distortion of the generator currents is introduced in the proposed topology which can be viewed as a minor disadvantage when compared to traditional boost rectifiers. A hysteresis control algorithm is proposed to achieve lower current harmonic distortion for the rectifier operation. The rectifier topology concept, the principle of operation, and control scheme are presented. Additionally, a dc-dc converter is also employed in the rectifier-battery connection. Test results on 50-kHz power converter system are presented and discussed to confirm the effectiveness of the proposed topology for PHEV applications.

Analysis and Control of Cost-Effective Topologies for Single Phase to Three Phase Power Converter (비용절감형 단상-삼상 전력변환기 구조의 해석 및 제어)

  • Lee, Hae-Chun;Park, Tae-Yeol;Kim, Gi-Taek
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.217-226
    • /
    • 1999
  • A single phase to three phase power converter with cost effective and simple structure is proposed. The converter consists of rectifier and inverter. The rectifier is composed of a half wave rectifier, a dc link capacitor, and a current limiting inductor, and the inverter is of only two switches with PWM control. For negative sequence operation the inverter output voltage leads the line input by $60^{\circ}$, and for positive sequence operation the inverter output voltage leads by $60^{\circ}$. We can see that positive sequence operation shows higher output voltage, slight harmonic distortion(2%), and better performances such as high efficiency and high power factor. A mathematical model for system analysis is provided, and specifications for selection and control scheme both for start-up and for steady state are analyzed. comparison and operational limits of positive and negative sequence operation are performed, and simulations and experiments are executed to verify the proposed.

  • PDF

Elimination of Harmonics Voltage-fed Inverter using Flyback Converter with Three-Phase High Power Factor (3상 고역률 Flyback 컨버터를 이용한 전압형 인버터의 고조파 제거)

  • Suh, K.Y.;Kwon, S.K.;Lee, H.W.;Ko, T.E.;Kim, Y.M.;Mun, S.P.;Jang, W.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2695-2697
    • /
    • 1999
  • A new three-phase voltage-fed inverter using partial resonant converter with high power factor and high efficiency is proposed. The proposed Flyback converter is constructed by using a resonant network in parallel with the switch of the conventional converter. The devices are switched zero voltage or zero current eliminating the switching loss. This paper introduces elimination of harmonics compared with conventional SPWM inverter and three-phase voltage-fed inverter using Flyback converter.

  • PDF

High Power Factor Three-phase AC-DC Flyback Converter Module Using Zero Voltage Switching (영전압 스위칭을 이용한 고역률 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Song, J.H.;Choy, I.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2701-2703
    • /
    • 1999
  • A new mode of parallel operation of a modular 3-phase AC-DC Flyback converter for high power factor correction along with tight regulation is presented in this thesis. The converter offers input/output transformer isolation for safety, a unity input power factor for minimum reactive power, high efficiency and high power density for minimum weight and volume. Compared with previously developed 3-phase two-stage power converter, the advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper, a detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

A Novel Three-Port Converter for the On-Board Charger of Electric Vehicles (새로운 전기 자동차 온보드 충전기용 3-포트 컨버터)

  • Amin, Saghir;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • This paper presents a novel three-port converter for the OnBoard Charger of Electric Vehicles by using an impedance control network. The proposed concept is suitable for charging a main battery and an auxiliary battery of an electric vehicle at the same time due to its power handling capability of the converter without additional switches. The power flow is managed by the phase angle (${\Theta}$) between the ports whereas voltage at each port is controlled by the asymmetric duty cycle and the phase shift (${\Phi}$) between the inverter lags controlled by the impedance control network. The proposed system has a capability of achieving zero voltage switching (ZVS) and zero current switching (ZCS) at all the switches over the wide range of input voltage, output voltage and output power. The feasibility of the proposed system is verified by the PSIM simulation.

  • PDF

Control and Operating Characteristics of Three-Phase Matrix Converter with Unity Power Factor by Direct Duty-Ratio Modulation Method (단위 역률을 갖는 직접 시비율 변조방식 3상 매트릭스 컨버터의 제어 및 동작 특성)

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2009
  • This paper investigates operating characteristics of three-phase matrix converter with unity input power factor by direct duty-ratio pulse-width modulation in the case of balanced and unbalanced load. It can be found from the system analysis that (1) The control algorithm for unity power factor is not related to the variables of load sides but the input voltages, (2) With the balanced three-phase load except for the pure reactive load, the unity input power factor can be achieved, (3) In the case of the unbalanced linear load, the equivalent input characteristics of the matrix converter can be seen like the nonlinear resister, (4) When the input frequency and the output frequency have the specific relationship, each input phases have the same sharing of the average power. The feasibility and validity of the analysis were verified by simulation and experimental results.

A Study on the 3-phase 13.2 kV Solid State Transformer for the DC Distribution (직류 배전망 연계를 위한 3상 13.2kV급 반도체 변압기 시스템에 대한 연구)

  • Jeong, Dong-Keun;Yun, Hyeok-Jin;Park, Si-Ho;Kim, Ho-Sung;Kim, Myoung-Ho;Ryu, Myung-Hyo;Baek, Ju-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.315-324
    • /
    • 2021
  • A solid state transformer (SST) that can interface an MVAC of three-phase 13.2 kV and a 1.5 kV DC distribution. SST consists of an AC/DC converter and a DC/DC converter with a high-frequency isolation transformer (HFIT). The AC/DC converter consists of cascaded NPC full-bridge to cope with the MVAC. The DC/DC converter applies a quad active bridge (QAB) topology to reduce the number of the HFIT. Topology analysis and controller design for this specific structure are discussed. In addition, the insulation of HFIT used in DC/DC converters is considered. The discussion is validated using a 300 kVA three-phase SST prototype.

THREE LEVEL SINGLE-PHASE SINGLE STAGE AC/DC RESONANT CONVERTER WITH A WIDE OUTPUT OPERATING VOLTAGE RANGE (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Lee, G.W;Kim, M.J;Kim, E.S
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.434-435
    • /
    • 2018
  • In this paper, a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage is presented. It integrates a PFC converter and a three level DC/DC converter into one. The proposed converter operates at a fixed frequency and provides a wide controllable output voltage ($200V_{dc}-430V_{dc}$) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. Moreover, all the switching devices operate with ZVS, and the converter's THD is small especially at full load. The feasibility of the proposed converter is verified with experimental results of a 1.5kW prototype.

  • PDF