• Title/Summary/Keyword: Three-phase induction motor

Search Result 290, Processing Time 0.034 seconds

A Speed Control Characteristics for Five-Phase Squirrel-Cage Induction Motor Injecting 3rd Current Harmonics Component (제3 고조파 전류성분 주입에 의한 5상 농형 유도전동기의 속도제어 특성)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • This paper proposes a improved speed control system for five-phase squirrel-cage induction motor(IM) injecting 3rd. current harmonic components with field oriented control (FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current in order to high response characteristics. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[kW] induction motor.

A Vector Control System for Five-Phase Squirrel-Cage Induction Motor Considering Effects of 3rd Current Harmonics Component (제3 고조파 전류성분의 영향을 고려한 5상 농형 유도전동기의 벡터제어 시스템)

  • Kim, Min-Huei;Kim, Nam-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.206-213
    • /
    • 2012
  • This paper propose a improved speed control system for five-phase squirrel-cage induction motor(IM) considering effects of 3rd. harmonic current components with field oriented control(FOC) A five-phase IM drives present unique characteristics due to the additional degrees of freedom and also drives possess many others advantage compared with the traditional three-phase motor drive system, such as reducing a amplitude of torque pulsation at low frequency and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated windings. The produced back-electromotive force is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus third harmonic of currents. There is necessary to controlled 3rd harmonic current. For presenting the superior performance of the proposed the speed control system, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] induction motor.

Low-Cost Single-Phase to Three-Phase AC/DC/AC PWM Converters for Induction Motor Drives (유도전동기 구동을 위한 저가형 단상-3상 AC/DC/AC PWM 컨버터)

  • 김태윤;이지명;석줄기;이동춘
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.322-331
    • /
    • 2002
  • In this paper, a single-phase to three-phase PWM converter topology using a single-phase half-bridge PWM rectifier and a 2-leg inverter for low cost three-phase induction motor drives is proposed. In addition, the source voltage sensor is eliminated with a state observer which controls the deviation between the model current and the system current to be zero. The converter topology is of lower cost than the conventional one, which gives sinusoidal input current, unity power factor, dc output voltage control, bidirectional power flow and VVVF output voltage. The experimental results for V/F control of 3Hp induction motor drives have been shown.

Field Oriented Control for Induction Motor Using Four Switch Three Phases Inverter

  • Tuyen, Nguyen D.;Hoang, Nguyen M.;Lee, Hong-Hee;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.216-218
    • /
    • 2008
  • This paper presents a space vector pulse width modulation (SVPWM) technique for four-switch three-phase (4S3P) inverter topology. The method aims to apply Field Oriented Control (FOC) of Induction motor using 4S3P. The simulations are carried out and the experimental results are given to verify the feasibility of this method.

  • PDF

The Model Development of Coupled Thermo-Electromagnetic Analysis in Three-phase Induction Motors by using Heat loss Mapping Method (3상 유도 전동기에서의 열손실 사상법을 이용한 열전달-전자기장 연계 수치 해석 모델 개발)

  • Kim, Dong-Hee;Kim, Chi-Won;Jung, Hye-Mi;Lee, Ju;Um, Suk-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.788-789
    • /
    • 2011
  • A comprehensive thermo-electromagnetic model has been developed to estimate temperature and electromagnetic distribution in an three-phase induction motor under steady state operation. Electromagnetic modeling enables us to predict thermal dissipation rates by eddy-current loss and copper loss in induction motors. Non-uniform temperature distributions are investigated to account for the strong effect of local temperature build-up on the motor performance and expected life-span. For more accurate thermal modeling purpose, Heat loss mapping method, which is matched up with electromagnetic losses and volumetric heat source, is developed and performed analysis. Heat loss mapping method can be greatly used as a design or diagnostic tool for three-phase induction motors with complex structural electromagnetic fields.

  • PDF

A Study on New Harmonic Elimination Method Using Walsh Series (왈쉬급수를 사용한 새로운 고조파 제거 방법에 관한 연구)

  • 박민호;안두수;원충연;이해기;이명규;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.3
    • /
    • pp.263-272
    • /
    • 1990
  • In the variable speed driving system of a three phase induction motor controlled by a PWM inverter, the output terminal contains considerable amount of harmonic components of the voltage waveform due to the switching action of semiconductor devices, causing torque ripples, acoustic noise and oscillation of the motor. This paper describes a new algorithm which eliminates the harmonics and controls the fundamental voltage in three phase PWM inverter output waveform. The new algorithm utilizes the technique of particular harmonics elimination (PHE) by walsh series in three phase PWM inverter output waveform. A microprocessor (8086 CPU)-controlled three phase induction motor system is described to realize this algorithm. The system is designed for 3 phase output voltage in the 1-60Hz interval where 5th and 7th harmonics, and 5th, 7th, 11th, and 13th harmonics are eliminated. Also, the fundamental wave amplitude is designed to be proportional to the output frequency. The performance of the proposed method shows sufficient elimination of the harmonics and also reduction of computation time which determines switching pattern. The proposed PWM pattern by Walsh series, is effective not only to induction motors but also to other electromagetic equipments such as voltage regulators and UPS.

A Study on the Off-Line Parameter Estimation for Sensorless 3-Phase Induction Motor using the D-Axis Model in Stationary Frame (정지좌표계 d축 모델을 이용한 위치센서 없는 3상 유도전동기의 오프라인 제정수 추정에 관한 연구)

  • Mun, Tae-Yang;In, Chi-Gak;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Accurate parameters based on equivalent circuit are required for high-performance field-oriented control in a three-phase induction motor. In a normal case, stator resistance can be accurately measured using a measuring equipment. Except for stator resistance, all machine parameters on the equivalent circuit should be estimated with particular algorithms. In the viewpoint of traditional regions, the parameters of an induction motor can be identified through the no-load and standstill test. This study proposes an identification method that uses the d-axis model of the induction motor in a stationary frame with the predefined information on stator resistance. Mutual inductance is estimated on the rotational dq coordination similar to that in the traditional no-load experiment test. The leakage inductance and rotor resistance can be estimated simply by applying different voltages and frequencies in the d-axis model of the induction motor. The proposed method is verified through simulation and experimental results.

Efficient Two-Stage Braking Method of Three-Phase Induction Motor (3상 유도전동기의 효율적인 2단 제동 기법)

  • Lee, Eun-Young;Kim, Yong;Kim, Pill-Soo;Kwon, Soon-Do
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper, two-stage braking method of 3-phase induction motrois proposed. This brake involves tow stages. The first stage is capacitor self-excitation braking, and the second stage is three-phase magnetic braking. In several applicatons, a low cost and effective brake is required for three-phase induction motor. A mechanical friction brake, typical braking method for induction motor requires external energy sources which is not safe, expensive and requires maintenance. Static and dynamic analyses of the proposed brake scheme are along with analytical result, simulated waveforms and experimental waveforms are compared. The experimental results shows good agreement with the simulated results.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

A Simplified Modulation Strategy for Three-leg Voltage Source Inverter Fed Unsymmetrical Two-winding Induction Motor

  • Sinthusonthishat, Saliltip;Chuladaycha, Nontawat
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1337-1344
    • /
    • 2013
  • This paper presents a simplified modulation strategy for the three-leg VSI fed two-winding induction motor. The strategy provides independent unbalanced voltage control for the main and auxiliary windings. This make the motor can be reversed rotation through the range of motor speed operation without limitation of voltage boost of the auxiliary winding. To study the advantages of the proposed drive, the experimental results such as voltage stresses, hysteresis band of the currents in locus, and also acoustic noise levels of the three-leg VSI are compared with those of the conventional two-leg topology. The results obviously show that the proposed technique achieves superior performance compared with the traditional scheme in case of dramatic increase of DC bus utilization, effective reduction of harmonic voltages content, and also significant enhancement of motor efficiency.