• Title/Summary/Keyword: Three-phase coupled inductor

Search Result 13, Processing Time 0.029 seconds

Analysis and Modeling of Parallel Three-Phase Boost Converters Using Three-Phase Coupled Inductor

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1086-1095
    • /
    • 2013
  • The main issue of parallel three-phase boost converters is reduction of the low- and high frequency circulating currents. Most present technologies concentrate on low frequency circulating current because the circulating current controller cannot mitigate the high frequency circulating current. In this paper, analytical approach of three-phase coupled inductor applied to parallel system becomes an important objective to effectively reduce the low- and high frequency circulating currents. The characteristics of three-phase coupled inductor based on a structure and voltage equations are mathematically derived. The modified voltage equations are then applied to parallel three-phase boost converters to develop averaged models in stationary coordinates and rotating coordinates. Based on the averaged modeling approach, design of the circulating current controller is presented. Simulation and experimental results demonstrate the effectiveness of the analysis and modeling for the parallel three-phase boost converters using three-phase coupled inductor.

Generalized Circulating Current Control Method in Parallel Three-Phase Boost Converters (병렬 삼상 부스트 컨버터에서 일반화된 순환전류 제어 방법)

  • Lim, Chang-Soon;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.250-257
    • /
    • 2011
  • This paper analyzes characteristic of the three-phase coupled inductor connected to ac source to effectively mitigate the high-frequency circulating current generated in parallel three-phase boost converters. The three-phase coupled inductor analysis presented in this paper uses the three-phase coupled inductor structure and voltage equations. Based on this analysis, the three-phase coupled inductor is added to the conventional low-frequency averaged model. As a result, the novel averaged model which can reduce the low and high-frequency circulating current simultaneously is developed. Using the zero-sequence component of the novel averaged model, each total inductance to the circulating current of the three-phase coupled inductor and line inductor can be obtained. Simulation and experiment results verify the usefulness of three-phase coupled inductor in parallel three-phase boost converters.

A study on the CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC Converter with Phase Shift Control (위상이동 방식을 적용한 CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) DC/DC 컨버터에 관한 연구)

  • Lee, Dong-Hyun;Kim, Yong;Bae, Jin-Yong;Kim, Pill-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.159-162
    • /
    • 2004
  • The paper proposes the coupled inductor rectifier of Three Level DC/DC converter CICDR-TL(Coupled Inductor Current Doubler Rectifier-Three Level) achieves Zero Voltage Switching (ZVS) for the switches in a wide load range and Zero Current Switching (ZCS) in a light load range. Advantages and disadvantages of this topology compared to the conventional Center Tapped TL Converter are discussed. Experimental evaluation results obtained on a 27V 60A DC/DC converter prototype for the 1.8kW 40kHz IGBT based experimental circuit.

  • PDF

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

Inductor Characteristics Analysis in High Power Interleaved Buck Converter

  • Yun, Chul;Yoon, Byungkeun;Kwon, Woohyen;Kim, Woohyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • Inductor in high power converter system increases production cost, volume and core loss proportional to the power. To decrease these disadvantages, this paper analyzed the characteristic of parallel-inductor and coupled-inductor in interleaved system with simulation. As a result, it is confirmed that two-phase interleaved non-coupled buck-converter has the best characteristic among three types converter.

A Study on the Zero-Voltage and Zero-Current-Switching Three Level DC/DC Converter using Secondary Coupled Inductor (2차측 결합 인덕터를 이용한 ZVZCS Three Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kim, Pill-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.200-204
    • /
    • 2001
  • A ZVZCS(Zero Voltage and Zero Current Switching) Three Level DC/DC Converter is presented to secondary auxiliary circuit. The new converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the outer switch. A secondary auxiliary circuit, which consists of one small capacitor two small diode and one coupled inductor is added in the secondary to provides ZVZCS conditions to primary switches, ZVS for outer switches and ZCS for inner switches. Many advantages including simple circuit topology high efficiency, and low cost make the new converter attractive for high power applications. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 1kW 50kHz IGBT based experimental circuit.

  • PDF

A study on the ZVZCS(Zero-Voltage and Zero-Current-Switching) Three-Level converter using the secondary auxiliary circuit (2차측 보조회로를 이용한 ZVZCS Three-Level 컨버터에 관한 연구)

  • Kim, Dong-Won;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Lee, Kyu-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.161-164
    • /
    • 2009
  • This paper presents the ZVZCS(Zero Voltage and Zero-Current-Switching) Three-Level converter using the secondary coupled inductor and auxiliary capacitor. The converter with phase-shift control is proposed to reduce the circulating loss in primary and the voltage stress in secondary side. Using a coupled winding of the output inductor, two auxiliary capacitors are generated to reset the primary current at circulating interval.

  • PDF

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

A Study on the Three-Level Converter using Primary Auxiliary Circuit (1차측 보조회로를 이용한 Three-Level 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Cho, Kyu-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.972-981
    • /
    • 2008
  • A New ZVS(Zero Voltage Switching) and ZVZCS(Zero Voltage and Zero Current Switching) Three-Level Converter is proposed. The proposed converter presented in this paper used a phase shift control with a flying capacitor in the primary side to achieve ZVS for the all switch. A primary auxiliary circuit, which consists of one coupled inductor, is added in the primary to provide ZVZCS conditions to primary switches. Many advantages including simple circuit topology high efficiency, and low cost make this converter attractive for high power applications. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW(27V, 74A) 40 kHz IGBT based experimental circuit.

Power Conditioner with Variable Current Loop Gain (가변 전류루프이득을 가지는 Power Conditioner)

  • Jeong, C.Y.;Lee, Y.W.;Baek, J.W.;Yoo, D.W.;Ann, C.M.;Joo, G.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1101-1104
    • /
    • 2001
  • This paper describes a newly developed power conditioner with variable current loop gain. The power conditioner consists of a do-link capacitor and three phase inverter with coupled inductor. This system is very well operated to compensate current harmonics and asymmetries caused by nonlinear load and unbalance loads. The power conditioner shapes the source current sinusoidal in phase with source voltage. A 100kVA power conditioner was built and the controller is realized with DSP Experimental results for many load conditions are presented to verify the performance of the controller.

  • PDF