• Title/Summary/Keyword: Three-level dc-dc converter

Search Result 108, Processing Time 0.034 seconds

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

Performance of an SiC-MOSFET Based 11-kW Bi-directional On-board Charger (SiC-MOSFET 기반 11-kW급 양방향 탑재형 충전기 성능)

  • Lee, Sang-Youn;Lee, Woo-Seok;Lee, Jun-Young;Lee, Il-Oun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.376-379
    • /
    • 2021
  • The design and performance of a SiC-MOSFET-based 11-kW bi-directional on-board charger (OBC) for electric vehicles is presented. The OBC consists of a three-phase two-level AC/DC converter and a CLLLC resonant converter. All the power devices are implemented with SiC-MOSFETs to reduce the conduction losses generated in the OBC, and the DC-link voltage is designed to track the level of battery voltage in the forward and reverse powering modes. As a result, the CLLLC resonant converter always runs at the switching frequency near the resonant frequency, resulting in high-efficiency operation at the maximum powering modes. As the DC-link voltage varies according to the battery voltage, the AC/DC converter in the proposed OBC adopts an adaptive DC-link voltage controller. The performance of the proposed 11-kW OBC is verified by a prototype converter with the following specifications: three-phase 60-Hz 380-V input, 11-kW capacity, and battery voltage range of 214-413-V, resulting in the conversion efficiency of over 95.0-% in the forward and reverse powering modes.

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV (EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발)

  • Kim, Min-Jae;Kim, Yeon-Woo;Prabowo, Yos;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.

Improvement of Switching Converter's Input Wave Using VIENNA Rectifier (VIENNA 정류기를 이용한 스위칭 컨버터의 입력 파형 개선)

  • Jung, Hun-Sun;Choi, Jae-Ho;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.201-204
    • /
    • 2007
  • This paper proposes a improvement of switching converter's input wave form using VIENNA Rectifier(three-phase three-switch three-level PWM Rectifier). VIENNA Rectifier is based on the combination of a three-phase diode bridge and dc/dc boost converter. It can be available to get sinusoidal mains current, and low-blocking voltage stress on rower transistors. In addition, it can control output voltage.

  • PDF

A New Soft-Switching Three-Level Flying Capacitor Converter (새로운 소프트스위칭 3레벨 Flying Capacitor 컨버터)

  • Kim, Jae-Hoon;Kim, Sun-Ju;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.484-489
    • /
    • 2020
  • This study proposes a new soft-switching three-level flying capacitor converter with low filter inductance. The proposed converter can achieve zero voltage switching (ZVS) turn-on of all switches by using auxiliary components La and Ca. It can also reduce filter inductance because the applied voltage of the filter inductor is decreased by using the flying capacitor. Furthermore, filter inductance can be reduced because the operating frequency of the filter inductor is doubled by the phase shifting between switches S3 and S4. The operation principle, design of passive components for ZVS turn-on, interleaving effects, and comparison of different topologies are presented. The experimental waveforms of a 1 kW two-phase interleaved converter prototype are provided to verify the validity of the proposed converter.

ZVZCS(Zero-Voltage and Zero-Current-Switching Three-Level DC/DC Converter reducing voltage stress of auxiliary circuit (보조 회로의 전압 스트레스를 저감한 ZVZCS Three-Level DC/DC 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Cho, Kyu-Man;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.172-174
    • /
    • 2005
  • A ZVZCS(Zero-Voltage and Zero-Current-Switching) Three-Level DC/DC Convertor reducing voltage stress of auxiliary circuit is proposed. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2kW 40kHz IGBT based experimental circuit.

  • PDF

Analysis and Implementation of a New ZVS DC Converter for Medium Power Application

  • Lin, Bor-Ren;Shiau, Tung-Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1296-1308
    • /
    • 2014
  • This paper presents a new zero voltage switching (ZVS) converter for medium power and high input voltage applications. Three three-level pulse-width modulation (PWM) circuits with the same power switches are adopted to clamp the voltage stress of MOSFETs at $V_{in}/2$ and to achieve load current sharing. Thus, the current stresses and power ratings of transformers and power semiconductors at the secondary side are reduced. The resonant inductance and resonant capacitance are resonant at the transition interval such that active switches are turned on at ZVS within a wide range of input voltage and load condition. The series-connected transformers are adopted in each three-level circuit. Each transformer can work as an inductor to smooth the output current or a transformer to achieve the electric isolation and power transfer. Thus, no output inductor is needed at the secondary side. Three center-tapped rectifiers connected in parallel are used at the secondary side to achieve load current sharing. Compared with the conventional parallel three-level converters, the proposed converter has less switch counts. Finally, experiments based on a 1.44kW prototype are provided to verify the operation principle of proposed converter.