• Title/Summary/Keyword: Three-level NPC inverter

Search Result 73, Processing Time 0.02 seconds

Harmonic Analysis of NPC type three-level Inverter (NPC형 3-레벨 인버터의 고조파 특성 해석)

  • Kwon, Kyoung-Min;Im, Jae-Kwan;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1007_1008
    • /
    • 2009
  • 본 논문은 3상 NPC형 3-레벨 인버터를 영시퀀스 주입에 의한 SVPWM방식에 고조파의 특성이 가장 우수하다고 알려진PD(phase disposition)방식의 멀티 캐리어 방식을 적용하였다. 구현된 NPC형 3-레벨 인버터는 전 영역에서 동작할 수 있도록 구현하여, 각 영역에 따른 고조파 및 THD를 분석하였다. 일반적은로 NPC형 3-레벨 인버터는 2-레벨 인버터에 비해 동일 변조비에서 고조파의 특성이 우수 한 것으로 알려졌다. 본 논문에서는 이러한 변조비에 따른 고조파의 분포 이중 푸리에 시리즈를 통해 분석하였고, 이를 시뮬레이션을 통하여 검증하였다.

  • PDF

Optimized Low-Switching-Loss PWM and Neutral-Point Balance Control Strategy of Three-Level NPC Inverters

  • Xu, Shi-Zhou;Wang, Chun-Jie;Han, Tian-Cheng;Li, Xue-Ping;Zhu, Xiang-Yu
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.702-713
    • /
    • 2018
  • Power loss reduction and total harmonic distortion(THD) minimization are two important goals of improving three-level inverters. In this paper, an optimized pulse width modulation (PWM) strategy that can reduce switching losses and balance the neutral point with an optional THD of three-level neutral-point-clamped inverters is proposed. An analysis of the two-level discontinuous PWM (DPWM) strategy indicates that the optimal goal of the proposed PWM strategy is to reduce switching losses to a minimum without increasing the THD compared to that of traditional SVPWMs. Thus, the analysis of the two-level DPWM strategy is introduced. Through the rational allocation of the zero vector, only two-phase switching devices are active in each sector, and their switching losses can be reduced by one-third compared with those of traditional PWM strategies. A detailed analysis of the impact of small vectors, which correspond to different zero vectors, on the neutral-point potential is conducted, and a hysteresis control method is proposed to balance the neutral point. This method is simple, does not judge the direction of midpoint currents, and can adjust the switching times of devices and the fluctuation of the neutral-point potential by changing the hysteresis loop width. Simulation and experimental results prove the effectiveness and feasibility of the proposed strategy.

Novel Switching Table for Direct Torque Controlled Permanent Magnet Synchronous Motors to Reduce Torque Ripple

  • Arumugam, Sivaprakasam;Thathan, Manigandan
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.939-954
    • /
    • 2013
  • The Direct Torque Control (DTC) technique for Permanent Magnet Synchronous Motors (PMSM) is receiving increased attention due to its simplicity and robust dynamic response when compared with other control techniques. The classical switching table based DTC results in large flux and torque ripples in the motors. Several studies have been reported in the literature on classical DTC. However, there are only limited studies that actually discuss or evaluate the classical DTC. This paper proposes, novel switching table / DTC methods for PMSMs to reduce torque ripples. In this paper, two DTC schemes are proposed. The six sector and twelve sector methodology is considered in DTC scheme I and DTC scheme II, respectively. In both DTC schemes a simple modification is made to the classical DTC structure. The two level inverter available in the classical DTC is eliminated by replacing it with a three level Neutral Point Clamped (NPC) inverter. To further improve the performance of the proposed DTC scheme I, the available 27 voltage vectors are allowed to form different groups of voltage vectors such as Large - Zero (LZ), Medium - Zero (MZ) and Small - Zero (SZ), where as in DTC scheme II, all of the voltage vectors are considered to form a switching table. Based on these groups, a novel switching table is proposed. The proposed DTC schemes are comparatively investigated with the classical DTC and existing literatures through theory analysis and computer simulations. The superiority of the proposed DTC method is also confirmed by experimental results. It can be observed that the proposed techniques can significantly reduces the torque ripples and improves the quality of current waveform when compared with traditional and existing methods.