• Title/Summary/Keyword: Three-dimensional velocity components

Search Result 91, Processing Time 0.029 seconds

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.65-70
    • /
    • 2001
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame-front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, unstrained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.2
    • /
    • pp.62-68
    • /
    • 2002
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame- front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, un strained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

Measurement System Development for Three-Dimensional Flow Velocity Components Using Straight-Type Five-Hole Pressure Probe (직선형 5공 압력프로브를 이용한 3차원 유동속도 계측시스템 개발)

  • Kim, J.K.;Jeong, K.J.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.56-64
    • /
    • 2006
  • This paper shows the development process of a straight-type five-hole pressure probe for measuring three-dimensional flow velocity components. The data reduction method using a bi-cubic curve-fitting program in a new calibration map was introduced in this study. This new calibration map can be applied up to the application angle, ${\pm}55^{\circ}$ of a probe. As a result, for the application angle of ${\pm}45^{\circ}$, an error for yaw and pitch angles appeared from $-1.76^{\circ}\;to\;1.83^{\circ}$ and from $-1.91^{\circ}\;to\;1.75^{\circ}$, respectively. Moreover, an error for a vector magnitude and a static pressure compared with a dynamic one showed from -7.83% to 4.87% and from -0.73 to 0.77, respectively. Even though this data reduction method showed unsatisfactory errors in a vector magnitude, it resulted in an easy and simple application method. Especially, when it was applied to an actual flow field including a swirling flow, a good result came out on the whole. However, in order to obtain a better result, it is thought that a more sophisticated interpolation method needs to be introduced.

  • PDF

Measurements of Three-Dimensional Velocities of Spray Droplets Using the Holographic Velocimetry System

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1095-1103
    • /
    • 2003
  • The Holographic Particle Velocimetry system can be a promising optical tool for the measurements of three dimensional particle velocities. In this study, the holographic particle velocimetry system was used to measure the sizes and velocities of droplets produced by a commercial full cone spray nozzle. As a preliminary validation experiment, the velocities of glass beads on a rotating disk were measured with uncertainty analysis to identify the sources of all relevant errors and to evaluate their magnitude. The error of the particle velocity measured by the holographic method was 0.75 ㎧, which was 4.5% of the known velocity estimated by the rotating speed of disk. The spray droplet velocities ranged from 10.3 to 13.3 ㎧ with average uncertainty of ${\pm}$ 1.6 ㎧, which was ${\pm}$ 14% of the mean droplet velocity. Compared with relatively small uncertainty of velocity components in the normal direction to the optical axis, uncertainty of the optical axis component was very high. This is due to the long depth of field of droplet images in the optical axis, which is inherent feature of holographic system using forward-scattering object wave of particles.

Study on the Three Dimensional Flow Characteristics of the Propeller Wake Using PIV Techniques (PIV 기법을 이용한 프로펠러 후류의 3차원 유동 특성 연구)

  • Paik, Bu-Geun;Kim, Jin;Kim, Kyung-Youl;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.219-227
    • /
    • 2007
  • A stereo-PIV (particle image velocimetry) technique is used to investigate the vortical structure of the wake behind a rotating propeller in the present study. A four bladed propeller is tested in a cavitaion tunnel without any wake screen. Hundreds of instantaneous velocity fields are phase-averaged to reveal the three dimensional spatial evolution of the flow behind the propeller. The results of conventional 2-D PIV are also compared with those of the stereo-PIV to understand the vortical structure of propeller wake deeply. The variations of radial and axial velocities in the 2-D PIV results seem to be affected by the out-of-plane motion. generating a little perspective error in the in-plane velocity components of the slipstream. The strong out-of-plane motion around the hub vortex also causes the perspective error to vary the axial velocity component a little at the near wake region. The out-of-plane velocity component had the maximum value of about 0.3U0 in the tip vortices and continued its magnitude in the wake region.

Hierarchical structure parameters in three dimensional turbulence: She-Leveque model

  • Ahmad, Imtiaz;Hadj-Taieb, Lamjed;Hussain, Muzamal;Khadimallah, Mohamed A.;Taj, Muhammad;Alshoaibi, Adil
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.747-755
    • /
    • 2022
  • Hierarchical structure parameters, proposed in She-Leveque model, are investigated for velocity components obtained from different flow types over a large range of Reynolds numbers 255 < Re𝜆 < 720. The values of intermittency parameter 𝛽, with respect to a fixed velocity component, are observed nearly same for all four types of turbulence. The parameter 𝛾, for streamwise velocity components is nearly the same but significantly different for vertical components in different flows. It is also observed that for both parameters, an obvious relation between the longitudinal and transverse components 𝛽T < 𝛽L (and 𝛾T < 𝛾L) always holds. However, the difference between 𝛽L and 𝛽T is found very small in all types of turbulent flows, we studied here. It is evidenced that at low Reynolds numbers, the deviations from K41 scaling are mainly due to the most intense structures and slightly because of more heterogeneous hierarchy of fluctuation structures. However, at higher Reynolds numbers the deviations seem as a consequence of the most intense structures only. Over all, the study suggests that the hierarchy parameter 𝛽 may be consider as a universal constant.

Development and Application of a Miniature Stereo-PIV System (Miniature Stereo-PIV 시스템의 개발과 응용)

  • Kim, K.C.;Chetelat, Olivier;Kim, S.H.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1637-1644
    • /
    • 2003
  • Stereoscopic particle image velocimetry is a measurement technique to acquire three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced from out-of$.$plane velocity components using a stereoscopic matching method. Most industrial fluid flows are three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Miniature Stereo-PIV(MSPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some primitive experimental results of the Miniature Stereo-PIV system. The Miniature Stereo-PIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Miniature Stereo-PIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

Development of a Stereoscopic Miniature PIV(MPIV) System (Stereoscopic Miniature PIV (MPIV) 시스템의 개발)

  • Kim S.H.;Chete1at O.;Kim K.C.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.517-520
    • /
    • 2002
  • Stereoscopic particle image velocimetry is a measurement technique to acquire of three dimensional velocity field by two cameras. With a laser sheet illumination, the third velocity component can be deduced by out-of-plane velocity components using a stereoscopic matching method. Industrial fluid flows are almost three dimensional turbulent flows, so it is necessary to use the stereoscopic PIV measurement method. However the existing stereoscopic PIV system seems hard to use since it is very expensive and complex. In this study we have developed a Stereoscopic Miniature PIV(MPIV) system based on the concept of the Miniature PIV system which we have already developed. In this paper, we address the design and some first experimental results of the stereoscopic PIV system. The Stereoscopic MPIV system features relatively modest performances, but is considerably smaller, cheaper and easy to handle. The proposed Stereoscopic MPIV system uses two one-chip-only CMOS cameras with digital output. Only two other chips are needed, one for a buffer memory and one for an interfacing logic that controls the system. Images are transferred to a personal computer (PC) via its standard parallel port. No extra hardware is required (in particular, no frame grabber board is needed).

  • PDF

Development of 3 - Dimensional Ultrasonic Wind Direction Anemometer Measurement Technique Using Time Division Method (시분할 방식을 이용한 3차원 초음파 풍향풍속계 측정기술 개발)

  • Lee, Woo-Jin;Choi, Jae-Young;Kim, Kyung-Won;Yim, Jae-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.66-72
    • /
    • 2017
  • The three dimensional ultrasonic anemometer was constructed to reduce the disadvantages of the two-dimensional anemometer and to be free from the use environment. Three pairs of transmitting and receiving ultrasonic sensors were designed to face each other at an angle of $45^{\circ}$ to the upper and lower surfaces at intervals of $120^{\circ}$. 200 kHz ultrasonic sensor Oscillation, transmission and reception, level detection, power supply circuit were designed and U, V, W wind speed vector components were obtained by measuring the time of first received ultrasonic pulse by transmitting pulse ultrasound. It is implemented as firmware in ARM Coretex-M3 processor so that horizontal and vertical wind direction and wind speed can be converted into digital signal by vector calculation. In this study, The three-dimensional ultrasonic anemometer can complement the disadvantages of the two-dimensional anemometer (mechanical and ultrasonic), and it is expected to gradually replace the two-dimensional anemometer due to its high utilization rate by collecting additional information such as vertical wind.

A Study on the Three Dimensional Statistical Turbulent Flow Characteristics Around a Small-Sized Axial Fan for Refrigerator (냉장고용 소형 축류홴의 통계학적 3차원 난류유동 특성에 관한 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.819-828
    • /
    • 2001
  • The operating point of a small-sized axial fan is strongly dependent upon the system resistance. Therefore, the turbulent flow characteristics around a small-sized axial fan may change significantly according to the operating point. This study represents three-dimensional turbulent flow characteristics around a small-sized axial fan measured at the ideal design point $\phi$=0.25, which is equivalent to the maximum total efficiency point, by using three dimensional fiber-optic type LDA system. This LDA system is composed of a 5 W Argon-ion laser, two optics in back-scatter mode, three BSAs, a PC, and a three-dimensional automatic traversing system. A kind of paraffin fluid is used to supply particles by means of fog generator. Mean velocity profiles downstream of a small-sized axial fan along the radial distance show that the streamwise and the tangential components exist in a predominant manner, while the radial component has a small scale distribution and shows the inflection which its flow direction is inward or outward. Moreover, the turbulent intensity profiles show that the radial component exists the most greatly among turbulent energies.