• Title/Summary/Keyword: Three-dimensional surface model

Search Result 821, Processing Time 0.029 seconds

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

A STUDY OF VON-MISES YIELD STRENGTH AFTER MANDIBULAR SAGITTAL SPLIT RAMUS OSTEOTOMY (하악지시상분할골절단술 시행 후 von-Miese 항복강도에 대한 유한요소법적 연구)

  • Yoon, Ok-Byung;Kim, Yeo-Gab
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2002
  • For the study of its stability when the screw has been fixed after sagittal split ramus osteotomy(SSRO) of the mandible, the methods of screw arrangement are classified into two types, triangular and straight. The angles of screws to the bone surface are classified as perpendicular arrangements, the $60^{\circ}$ anterioinferior screw, known as triangular, and the most posterior screw, called straight arrangement, thus there are four types. The finite element method model has been made by using a three dimensional calculator and a supercomputer. The load directions are to the anterior teeth, premolar region, and molar region, and the bite force is 1 Kgf to each region. The distribution of stress, the von-Mises yield strength, and safety of margin refer to the total sum of transformed energy have been studied by comparison with each other. The following conclusion has been researched : 1. When shear stress is compared, in the triangular arrangement in the form of "ㄱ", the anterosuperior screw is seen at contributing to the support of the bone fragment. In the straight arrangement, substantial stress is seen to be concentrated on the most posterior angled screw. 2. When the von-Mises yield strength is compared, it seemed that the stress concentration on the angled anteroinferior screw is higher, it shows a higher possibility of fracture than any other screw. In the straight arrangement, stress appeared to be concentrated on the most posteriorly angled screw. 3. When the safety margins of the transfomed energy are compared, the energy conduction is much greater in the case of the angled screw than in the case of the perpendicular screw. The triangular arrangement in the form of "ㄱ" shows a superior clinical sign to that of the straight arrangement. Judging from the above results, when the screw fixation is made after SSRO in practical clinical cases, two screws should be inserted in the superior border of mandibular ramus and a third screw of mandibular inferior border should be inserted in the form of triangular. All screws on the bony surface should be placed perpendicularly-$90^{\circ}$ angles apparently best promote bony support and stability.

Application of Relative Gravity Surveying and Modeling to Sinkhole Detection (싱크홀 탐지를 위한 상대중력측량과 중력모델링 기법의 활용)

  • Kim, Jinsoo;Lee, Young-Cheol;Lee, Jung-Mo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • The purpose of this research was to develop and present methods to detect sinkholes which can exist underneath the surface of the ground. First, we buried a water tank with dimensions $1.8{\times}0.8{\times}0.8m$ at a distance of 1.8 m from the surface. This played the role of the sinkhole. Secondly, we created a square zone with sides 12 meters away from the buried water tank. Within this zone, we measured the gravity at 1-meter intervals using a Scintrex CG5 relative gravimeter with a resolution of 0.001 mGal. Additionally, we performed three-dimensional (3-D) gravity modeling to calculate the theoretical values of the relative gravity around our model sinkhole. The resulting values for the relative gravity around the sinkhole depended on the method used. The measured effect of gravity was 0.036 mGal and the effect calculated using 3-D modeling was 0.024 mGal. Our results suggest that sinkholes that are similar in size to the water tank used in this study can be detected using relative gravity surveys. Smaller sinkholes can be detected by reducing the intervals between the relative gravity measurements.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Primary Solution Evaluations for Interpreting Electromagnetic Data (전자탐사 자료 해석을 위한 1차장 계산)

  • Kim, Hee-Joon;Choi, Ji-Hyang;Han, Nu-Ree;Song, Yoon-Ho;Lee, Ki-Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.361-366
    • /
    • 2009
  • Layered-earth Green's functions in electormagnetic (EM) surveys play a key role in modeling the response of exploration targets. They are computed through the Hankel transforms of analytic kernels. Computational precision depends upon the choice of algebraically equivalent forms by which these kemels are expressed. Since three-dimensional (3D) modeling can require a huge number of Green's function evaluations, total computational time can be influenced by computational time for the Hankel transform evaluations. Linear digital filters have proven to be a fast and accurate method of computing these Hankel transforms. In EM modeling for 3D inversion, electric fields are generally evaluated by the secondary field formulation to avoid the singularity problem. In this study, three components of electric fields for five different sources on the surface of homogeneous half-space were derived as primary field solutions. Moreover, reflection coefficients in TE and TM modes were produced to calculate EM responses accurately for a two-layered model having a sea layer. Accurate primary fields should substantially improve accuracy and decrease computation times for Green's function-based problems like MT problems and marine EM surveys.

Comparative Evaluation of Colon Cancer Stemness and Chemoresistance in Optimally Constituted HCT-8 cell-based Spheroids (적정 구성 배양 HCT-8 기반 대장암 스페로이드의 암 줄기세포능 및 항암제 내성 평가의 비교 평가 연구)

  • Lee, Seung Joon;Kim, Hyoung-Kab;Lee, Hyang Burm;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1313-1319
    • /
    • 2016
  • Cancer is a complex disease heterogeneously composed of various types of cells including cancer stem-like cells responsible for relapse and chemoresistance in the tumor microenvironment. The conventional two-dimensional cell culture-based platform has critical limitations for representing the heterogeneity of cancer cells in the three-dimensional tumor niche in vivo. To overcome this insufficiency, three-dimensional cell culture methods in a scaffold-dependent or -free physical environment have been developed. In this study, we improved and simplified the HCT-8 colon cancer cell-based spheroid culture protocol and evaluated the relationship between cancer stemness and responses of chemosensitivity to 5- Fluorouracil (5-FU), a representative anticancer agent against colon cancer. Supplementation with defined growth factors in the medium and the culture dish of the regular surface with low attachment were required for the formation of constant-sized spheroids containing $CD44^+$ and $CD133^+$ colon cancer stem cells. The chemo-sensitivities of $CD44^+$ cancer stem cells in the spheroids were much lower than those of $CD44^-$ non-stem-like cancer cells, indicating that the chemoresistance to 5-FU is due to the stemness of colon cancer cells. Taken together, the inflammation and oncogenic gut environment-sensitive HCT-8 cell-based colon cancer spheroid culture and comparative evaluation using the simplified model would be an efficient and applicable way to estimate colon cancer stemness and pharmaceutical response to anticancer drugs in the realistic tumor niche.

The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern (착지 높이와 지면 형태가 하지 관절에 미치는 영향)

  • Kim, Eun-Kyong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

Effect of implant- and occlusal load location on stress distribution in Locator attachments of mandibular overdenture. A finite element study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Martin-Fernandez, Elena;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • PURPOSE. The aim of this study is to evaluate and compare the stress distribution in Locator attachments in mandibular two-implant overdentures according to implant locations and different loading conditions. MATERIALS AND METHODS. Four three-dimensional finite element models were created, simulating two osseointegrated implants in the mandible to support two Locator attachments and an overdenture. The models simulated an overdenture with implants located in the position of the level of lateral incisors, canines, second premolars, and crossed implant. A 150 N vertical unilateral and bilateral load was applied at different locations and 40 N was also applied when combined with anterior load at the midline. Data for von Mises stresses in the abutment (matrix) of the attachment and the plastic insert (patrix) of the attachment were produced numerically, color-coded, and compared between the models for attachments and loading conditions. RESULTS. Regardless of the load, the greatest stress values were recorded in the overdenture attachments with implants at lateral incisor locations. In all models and load conditions, the attachment abutment (matrix) withstood a much greater stress than the insert plastic (patrix). Regardless of the model, when a unilateral load was applied, the load side Locator attachments recorded a much higher stress compared to the contralateral side. However, with load bilateral posterior alone or combined at midline load, the stress distribution was more symmetrical. The stress is distributed primarily in the occlusal and lateral surface of the insert plastic patrix and threadless area of the abutment (matrix). CONCLUSION. The overdenture model with lateral incisor level implants is the worst design in terms of biomechanical environment for the attachment components. The bilateral load in general favors a more uniform stress distribution in both attachments compared to a much greater stress registered with unilateral load in the load side attachments. Regardless of the implant positions and the occlusal load application site, the stress transferred to the insert plastic is much lower than that registered in the abutment.

Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu (백두산 화산 분출물 확산 예측에 대기흐름장 평균화가 미치는 영향)

  • Lee, Soon-Hwan;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.32 no.4
    • /
    • pp.360-372
    • /
    • 2011
  • In order to clarify the advection and dispersion characteristics of volcanic tephra to be emitted from the Mt. Baekdu, several numerical experiments were carried out using three-dimensional atmospheric dynamic model, Weather and Research Forecast (WRF) and Laglangian particles dispersion model FLEXPART. Four different temporally averaged meteorological values including wind speed and direction were used, and their averaged intervals of meteorological values are 1 month, 10 days, and 3days, respectively. Real time simulation without temporal averaging is also established in this study. As averaging time of meteorological elements is longer, wind along the principle direction is stronger. On the other hands, the tangential direction wind tends to be clearer when the time become shorten. Similar tendency was shown in the distribution of volcanic tephra because the dispersion of particles floating in the atmosphere is strongly associated with wind pattern. Wind transporting the volcanic tephra is divided clearly into upper and lower region and almost ash arriving the Korean Peninsula is released under 2 km high above the ground. Since setting up the temporal averaging of meteorological values is one of the critical factors to determine the density of tephra in the air and their surface deposition, reasonable time for averaging meteorological values should be established before the numerical dispersion assessment of volcanic tephra.