• Title/Summary/Keyword: Three-dimensional pattern design

Search Result 183, Processing Time 0.029 seconds

A Study on the Construction Technique of Western Women's Jacket in the Late 19th Century (19세기 말 서양 여성 재킷의 구성기술에 관한 연구)

  • Ryu, Kyung Hwa;Kim, Yang Hee
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.7
    • /
    • pp.60-74
    • /
    • 2015
  • It is considered that jacket was widespread in the 19th century due to its simple and convenient production technique. This study aims to explore the western women's jacket in the late 19th century, which is the basis of modern women's outwear, and we focused on the patterns and construction, the technical aspect of the jacket. We researched pattern books and preserved costume materials, and the study methods are as follows: First, we analyzed the pattern of the jackets from the pattern books and preserved costumes. Second, we analyzed the construction of the jackets from the preserved costumes and compared it to previous researches. The study results are as follows: 19th century jacket consisted of a bodice, a back bodice, a side panel, two-piece sleeve and a collar. The front bodice had cuttings and a dart to make the jacket fit the shape of the body and the two-pieced leg of mutton sleeve, puffed at the shoulder. Various styles of collar and neckline existed. The pattern suggested diverse ways of designing a jacket, such as cutting with partition, dart and pattern expansion that focused on three-dimensional effect at that time.

A Study on the Use of 3D Human Body Surface Shape Scan Data for Apparel Pattern Making (의류 패턴 설계를 위한 삼차원 인체 체표면 스캔 데이터 활용에 관한 연구)

  • 천종숙;서동애;이관석
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • In the apparel industry, the technology has been advanced rapidly. The use of 3D scanning systems fur the capture and measurement of human body is becoming common place. Three dimensional digital image can be used for design, inspection, reproduction of physical objects. The purpose of this study is to develop a method that drafts men's basic bodice pattern from scanned 3D body surface shape data. In order to pursue this purpose the researchers developed pattern drafting algorithm. The 3D scanner used in this study was Cyberware Whole Body Scanner WB-4. The bodice pattern drafting algorithm from 3D body surface shape data developed in this study is as follows. First, convert geometric 3D body surface data to 3D polygonal mesh data. Second, develop algorithm to lay out 3D polygonal patches onto a plane using Auto Lisp program. The polygon meshes are coplanar, and the individual mesh is continuously in contact with next one The bodice front surface shape data in polygonal patches form was lined up in bust and waist levels. The back bodice was drafted by lining up the polygonal mesh in scapula, chest, and waist levels. in the drafts, gaps between polygons were formed into the darts.

  • PDF

Numerical Study on Blockage and Slip Characteristics of Centrifugal Compressor Impellers (원심압축기 임펠러의 Blockage와 Slip 특성에 관한 수치연구)

  • Oh, Jongsik
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.236-244
    • /
    • 2000
  • As the second part of the author's study, the aerodynamic blockage and the slip factor of 8 centrifugal compressor impellers are investigated, when the flow rate is changed from numerical stall to choke, using three-dimensional Navier-Stokes analysis results. Based on all the exit blockage distributions, an improved model equation with two adjusting coefficients is developed for the use in design processes with the agile engineering purpose. A popular expression of constant slip factors, the Wiesner's equation, cannot be applied in design processes when more accurate prediction is strongly required at design and off-design points. Slip factor variation is found to be also influenced by the blade loadings at midspan. When the flow rate is changed, a pattern of the slip factor variations is assumed to be a simple form which can be explained using midspan blade loading distributions.

  • PDF

Contribution of Perforator Flaps in the Flap Selection for Head and Neck Reconstruction (두경부 재건을 위한 피판 선택에서 천공지피판의 역할)

  • Kim, Jeong Tae
    • Korean Journal of Head & Neck Oncology
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In head and neck reconstruction, microsurgeons are faced with various demands, such as thin resurfacing, or three-dimensional reconstruction, and therefore, conventional flap as well as perforator flaps are all useful for the functional and aesthetic reconstruction successfully. Among perforator flaps, the pros and cons of anterolateral thigh perforator flap(ALTp) and thoracodorsal perforator flap(TAp) is compared and selected depending on the surgeon's preference, recipient site condition or patient status. Both flaps can be elevated in a chimeric pattern by combining different aspects of tissue components. Customized or tailored reconstruction as well as 3 dimensional reconstructions are all available with perforator flaps and it is useful in head and neck reconstruction. The most outstanding update in head and neck reconstruction is the perforator based island flap (PBIF) compared to conventional flaps. The conventional local flap has evolved on behalf of the perforator concept and its design becomes more flexible and freestyle with less limitations. Actually, random pattern flap is now a misnomer and most conventional local flaps turn into PBIFs. Finally we can say all conventional donor site becomes universal, depending on the surgeons' preference or idea. Moreover, there is no more "flap of choice" and postoperative results are quite variable by surgeons' ability. Operative procedures and plans are very flexible to freestyle flap. With all these advantages, surgeons should be armed with both conventional and perforator concepts for solving any defects or problems.

Strategic Utilization of Soft Magnetic Composite in a High-Speed Switched Reluctance Machine Depending on a Loss Pattern (손실 패턴에 따른 고속 스위치드 릴럭턴스 전동기의 SMC 분말을 이용한 효율 개선)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.323-327
    • /
    • 2017
  • Soft magnetic composite (SMC) material has recently received a significant attention in the area of high-speed machines because of its unique properties such as good design flexibility and low eddy current loss. However, SMC's electromagnetic property is poor compared to silicon steel in terms of saturation, relative permeability, and hysteresis loss. This paper presents a technique for utilization of SMC in two strategic designs of a switched reluctance machine (SRM) depending on a loss pattern. To investigate the effect of SMC's merits and demerits, the stator material is changed from laminated steel to SMC.

A Study on the Measurement of the Breast Shape on Living Body by Using a PMP Moire Method (가슴형상 측정을 위한 PMP Moire 방법 활용)

  • Lee, Ga-Na;Yuk, Keun-Cheol;Kim, Byeong-Mee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.11 no.2
    • /
    • pp.11-21
    • /
    • 2009
  • Recently, as custom-made demand about female underwear is increased, securing of a various dimension system is urgent, and satisfaction of each customer cannot be heightened with established dimensions. If we could measure shape of a living body with a fast and simple method, the custom-made demand of customers could be satisfied in the underwear as well as a clothing industry by using the method. One of the alternatives is shape measurement of the living body by a Moire fringe method. If we put a grating in front of an object to be measured and illuminate light, a Moire fringe with contour line shape is generated in the object, so we can conveniently measure object shape without touching directly by using the pattern. The Moire fringe and three-dimensional shape of the breast of the living body was acquired by a PMP method using a polygon mirror, and height and bottom width of the breast of the living body were measured by using obtained data in this study. Data of breast shape measurement through a mannequin was collected in a previous step as basic material for measuring the breast shape measurement of the living body. Three women in the twenties were selected as one of methods for measuring breast shape of a woman. As a result of the breast shape measurement of a living body A, it was measured that height of the breast was about 67.24mm and the bottom width was $13781.60mm^2$. This study is expected to contribute for collecting basic data of a female underwear industry and establishing a specification of a dimension system.

  • PDF

Laser-Aided Direct Metal Deposition (DMD) Technology (레이저를 이용한 직접금속조형(DMD) 기술)

  • 지해성;서정훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.150-156
    • /
    • 2003
  • Direct Metal Deposition (DMD) is a new additive process producing three-dimensional metal components or tools directly from CAD data, which aims to take mold making and metalworking in an entirely new direction. It is the blending of five common technologies: lasers, CAD, CAM, sensors and materials. In the resulting process, alternatively called laser cladding, an industrial laser is used to locally heat a spot on a tool-steel work piece or platform, forming a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the metal pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is eventually built line-by-line, one layer at a time. DMD produces improved material properties in less time and at a lower cost than is possible with traditional fabrication technologies.

Development of the 3D Knee Protector for Yoga (요가용 3차원 무릎보호대 개발 및 평가)

  • Jung, Hyunju;Lee, Heeran;Chung, Ihn Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.4
    • /
    • pp.657-671
    • /
    • 2022
  • This study aims to develop three dimensional (3D) yoga knee protectors that provide excellent wearing comfort. Three types of pads were modeled using 3D human data: two types of 3.0-cm-wide pads separated into top and bottom with thicknesses of 0.1 cm (TPU-1: A) and 0.2 cm (TPU-2: B); and one type with three 0.2-cm-thick separated panels (TPU-S: C). Based on these models, five knee protectors were developed using 3D patterning and 3D printing. Types A, B, and C were integrated with 0.6-cm neoprene pads. Type D was fabricated with a donut-shaped 0.6-cm neoprene pad inserted, while Type E consisted of two discrete 0.6-cm neoprene pads embedded in the protector's upper and lower sides. Wearing comfort was evaluated in terms of fit, pressure, and cushioning while in a standing and kneeling position and while in motion. The findings suggest that the fabricated knee protectors were evaluated as comfortable to the individuals with knee pain, rather than those without knee pain. The individuals with knee pain preferred the soft pads made of neoprene positioned around the knee (NEO-S: E), while those without knee pain favored the cushioned pads with a pattern structure maintained by thin 3D-printed pads (TPU-1: A).

A Study on the Cellulose Blend Knit Fabrics using Burn-out Printing Convergence Technology (셀룰로오스 혼방 니트 편포의 착색번아웃 날염복합기술에 관한 연구)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, Jong-Lyel
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.4
    • /
    • pp.229-235
    • /
    • 2014
  • This study conducted a research on burn-out printing convergence technology for cellulose blend knit fabrics. Printing technology, which forms color pattern on the fabric, can be generally classified into four according to printer or printing method, e.g. screen printing, roller printing, rotary printing, digital printing. However, these printing methods are flat in design or pattern, which have limitation to overcome monotonousness of fabric, so that recently burn-out process method, which expresses three-dimensional pattern effect by treating chemical on the surface of fabric as the method to appeal its esthetics to the customers. Particularly, in case of cellulose/polyester composite material, first, it is proceeded in 2 processes, by dyeing cellulose or polyester fabric and burning out cellulose fabric, in this process, due to pollution caused by disperse dye migration, color of polyester fabric part could be discolored, which has high falt risk. This research considered coloring burn-out technique, which simultaneously proceed dyeing and burn-out by reducing dyeing and burn-out process to 1 stage, which were proceeded in 2 stages previously. As the research result, it was confirmed that reasonable depth of roller was 0.04~0.06mm in roller printing process, heat treatment condition of burn-out far-infrared radiation was $185^{\circ}C{\times}30m/min$. Color fastness to washing was confirmed to be 4-5 grade, color fastness to rubbing, 3-4 grade, color fastness to light, 4 grade. Also, it was confirmed that energy reduction effect appeared 38.19%, in case of energy cost per yard compared to the existing production, also, 19.74%, in case of production cost.

  • PDF

Development of Bib Pants Design and Pattern for Cycling Smart Wear (사이클링 스마트웨어 제작을 위한 빕 팬츠 디자인 및 패턴 개발)

  • Yunyoung, Kim;Byeongha, Ryu;Woojae, Lee;Kikwang, Lee;Rira, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.91-104
    • /
    • 2022
  • In this study, a cycling smart wear for measuring cycling posture and motion was developed using a three-dimensional motion analysis camera and an IMU inertial sensor. Results were compared according to parts to derive the optimal smart device attachment location, enabling correct posture measurement and cycle motion analysis to design a pattern. Conclusions were as follows: 1) 'S-T8' > 'S-T10' > 'S-L4' was the most significant area for each lumbar spine using a 3D motion analysis system with representative posture change (90°, 60°, 30°) to derive incisions and size specifications; 2) the part with the smallest relative angle change among significant section reference points during pattern design was applied as a reference point for attaching a cycling smart device to secure detachable safety of the device. Optimal locations for attaching the cycling device were the "S-L4" hip bone (Sacrum) and lumbar spine No. 4 (Lumbar 4th); 3) the most suitable sensor attachment location for monitoring knee induction-abduction was the anatomical location of the rectus femoris; 4) a cycling smart wear pattern was developed without incision in the part where the sensor and electrode passed. The wearing was confirmed with 3D CLO. This study aims to provide basic research on exercise analysis smart wear, to expand the smart cycling area that could only be realized with smart devices and smart watches attached to current cycles, and to provide an opportunity to commercialize it as cycling smart wear.