• 제목/요약/키워드: Three-dimensional pattern design

검색결과 184건 처리시간 0.026초

Cu-Cu 패턴 직접접합을 위한 습식 용액에 따른 Cu 표면 식각 특성 평가 (Wet Etching Characteristics of Cu Surface for Cu-Cu Pattern Direct Bonds)

  • 박종명;김영래;김성동;김재원;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제19권1호
    • /
    • pp.39-45
    • /
    • 2012
  • Cu-Cu 패턴의 직접접합 공정을 위하여 Buffered Oxide Etch(BOE) 및 Hydrofluoric acid(HF)의 습식 조건에 따른 Cu와 $SiO_2$의 식각 특성에 대한 평가를 수행하였다. 접촉식 3차원측정기(3D-Profiler)를 이용하여 Cu와 $SiO_2$의 단차 및 Chemical Mechanical Polishing(CMP)에 의한 Cu의 dishing된 정도를 분석 하였다. 실험 결과 BOE 및 HF 습식 식각 시간이 증가함에 따라 단차가 증가 하였고, BOE가 HF보다 더 식각 속도가 빠른 것을 확인하였다. BOE 및 HF 습식 식각 후 Cu의 dishing도 식각시간 증가에 따라 감소하였다. 식각 후 산화막 유무를 알아보기 위해 Cu표면을 X-선 광전자 분광법(X-ray Photoelectron Spectroscopy, XPS)를 이용하여 분석 한 결과 HF습식 식각 후 BOE습식 식각보다 Cu표면산화막이 상대적으로 더 얇아 진 것을 확인하였다.

유막 코팅 노즐의 유동특성에 관한 CFD해석 (CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle)

  • 정세훈;안승일;신병록
    • 한국유체기계학회 논문집
    • /
    • 제11권5호
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

배열회수 안내덕트 내부의 난류유동 수치시뮬레이션 (Numerical Simulation of Turbulent Flows in Inlet Duct of Heat Recovery Steam Generator)

  • 곽승현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.809-813
    • /
    • 2011
  • 배열회수시스템 입구덕트의 3차원 난류유동을 수치시뮬레이션 하였다. 본 연구는 덕트의 루프각을 부분적으로 수정하여 유동의 형상효과를 해석하는 것이 목표이다. 비구조 격자를 가지고 나비에 스톡스 방정식을 유한체적법으로 풀어 유체동력학적인 현상을 규명하였다. 유적선, 속도벡터, 동압, 잔차 등으로 수렴 등을 조사하였다. 난류모형은 k-epsilon, k-omega, reynolds stress 및 RNG k-epsilon 이다. 선회 및 비선회 조건을 2개의 덕트에 적용하였고 계산결과를 활용하여 최적형상설계를 검토하였다.

3D Rendering of Magnetic Resonance Images using Visualization Toolkit and Microsoft.NET Framework

  • Madusanka, Nuwan;Zaben, Naim Al;Shidaifat, Alaaddin Al;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • 제2권2호
    • /
    • pp.207-214
    • /
    • 2015
  • In this paper, we proposed new software for 3D rendering of MR images in the medical domain using C# wrapper of Visualization Toolkit (VTK) and Microsoft .NET framework. Our objective in developing this software was to provide medical image segmentation, 3D rendering and visualization of hippocampus for diagnosis of Alzheimer disease patients using DICOM Images. Such three dimensional visualization can play an important role in the diagnosis of Alzheimer disease. Segmented images can be used to reconstruct the 3D volume of the hippocampus, and it can be used for the feature extraction, measure the surface area and volume of hippocampus to assist the diagnosis process. This software has been designed with interactive user interfaces and graphic kernels based on Microsoft.NET framework to get benefited from C# programming techniques, in particular to design pattern and rapid application development nature, a preliminary interactive window is functioning by invoking C#, and the kernel of VTK is simultaneously embedded in to the window, where the graphics resources are then allocated. Representation of visualization is through an interactive window so that the data could be rendered according to user's preference.

수치해석을 통한 자동차 전면유리 제상성능 제어인자 연구 (Numerical Study on Control Factors of Defrosting Performance for Automobile Windshield Glass in Winter)

  • 윤영묵;;이금배;전용두
    • 설비공학논문집
    • /
    • 제20권12호
    • /
    • pp.789-794
    • /
    • 2008
  • Recently, much attention has been paid in the field of defrosting because clear windshield in vehicle without effecting the thermal comfort is realized essentially. Then in winter, defrosting performance is one of the important factors in vehicle design to make certain driver's view. In this study, the velocity profile, temperature distribution and frost melting pattern on the windshield screen have been predicted in three dimensional geometry of an automobile interior. Numerical analyses predict a detailed description of fluid flow and temperature patterns on the inside windshield screen, utilizing the flow through defroster nozzle. Numerical prediction established a good defrosting performance with the standard distance ratio and the defroster nozzle angle ranging from $30^{\circ}$ to $40^{\circ}$, which satisfy the condition of National Highway Traffic Safety Administration (NHTSA) completely.

자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구 (Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle)

  • 박원규;배인호
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

Prediction of plastic strength of elliptical steel slit damper by finite element analysis

  • Hossain, Mohammad I.;Amanat, Khan M.
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.249-261
    • /
    • 2022
  • This paper presents a numerical study to develop a guideline for estimating the plastic strength of elliptical steel slit damper with reasonable accuracy. The strut width increases from middle to end in elliptical steel slit damper and it is observed from the past studies that variation of the width is not considered for calculating the plastic strength of the damper. It is also noticed that the existing formulas for predicting plastic strength of this kind of damper may not be accurate and further refinement is warranted. Study is then carried on elliptical steel slit damper made of mild steel and having different geometry to find out equivalency of it with oblong steel slit damper having similar plastic strength. A few three-dimensional finite element models of seismic moment connection system with steel slit damper are developed and validated against past experiments for carrying the present study considering both the material nonlinearity as well as geometric nonlinearity. The results of the parametric studies have been compared with energy quantities and presented graphically to better understand the effects of different parameters on the system. Based on the pattern of parametric study results, closed-form semi-empirical algebraic expression of damper plastic strength is developed for elliptical steel slit damper which shows very good agreement with finite element analysis as well as experiments. This developed expression can now be used for elliptical steel slit damper in replacement with any type of damper in the design of moment connection.

A simplified framework for estimation of deformation pattern in deep excavations

  • Abdollah Tabaroei;Reza Jamshidi Chenari
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.31-48
    • /
    • 2024
  • To stabilize the excavations in urban area, soil anchorage is among the very common methods in geotechnical engineering. A more efficient deformation analysis can potentially lead to cost-effective and safer designs. To this end, a total of 116 three-dimensional (3D) finite element (FE) models of a deep excavation supported by tie-back wall system were analyzed in this study. An initial validation was conducted through examination of the results against the Texas A&M excavation cases. After the validation step, an extensive parametric study was carried out to cover significant design parameters of tie-back wall system in deep excavations. The numerical results indicated that the maximum horizontal displacement values of the wall (δhm) and maximum surface settlement (δvm) increase by an increase in the value of ground anchors inclination relative to the horizon. Additionally, a change in the wall embedment depth was found to be contributing more to δvm than to δhm. Based on the 3D FE analysis results, two simple equations are proposed to estimate excavation deformations for different scenarios in which the geometric configuration parameters are taken into account. The model proposed in this study can help the engineers to have a better understanding of the behavior of such systems.

Evolution of pullout behavior of geocell embedded in sandy soil

  • Yang Zhao;Zheng Lu;Jie Liu;Jingbo Zhang;Chuxuan Tang;Hailin Yao
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.275-284
    • /
    • 2024
  • This paper aims to explore the evolution of the pullout behavior of geocell reinforcement insights from three-dimensional numerical studies. Initially, a developed model was validated with the model test results. The horizontal displacement of geocells and infill sand and the passive resistance transmission in the geocell layer were analyzed deeply to explore the evolution of geocell pullout behavior. The results reveal that the pullout behavior of geocell reinforcement is the pattern of progressive deformation. The geocell pockets are gradually mobilized to resist the pullout force. The vertical walls provide passive pressure, which is the main contributor to the pullout force. Hence, even if the frontal displacement (FD) is up to 90m mm, only half of the pockets are mobilized. Furthermore, the parametric studies, orthogonal analysis, and the building of the predicted model were also carried out to quantitative the geocell pullout behavior. The weights of influencing factors were ranked. Ones can calculate the pullout force accurately by inputting the aspect ratio, geocell modulus, embedded length, frontal displacement, and normal stress.

무시멘트형 인공고관절 대치술후 초기의 경계면 미세운동의 3차원 FEM 연구 (A Study on the Interface Micromotions of Cementless Artificial Hip Replacement by Three-Dimensional FEM)

  • 김성곤;채수원;최형연
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1994년도 추계학술대회
    • /
    • pp.71-74
    • /
    • 1994
  • In cementless total hip arthroplasty(THA), an initial stability of the femoral component is mandatory to achieve bony ingrowth and secondary long term fixation. Bone ingrowth depends strongly on relative micromotion and stress distributions at the interface. Primary stability of the femoral component can be obtained by minimizing the magnitude of relative micromotions at bone-prosthesis interface, Hence an accurate evaluation of interface behavior and stress/strain fields in the bone implant system may be relevant for better understanding of clinical situations and improving THA design. However, complete evaluation of load transfer in the bone remains difficult to assess experimentally, Hence, recently finite element method (FEM) was introduced in orthopaedic research field to fill the gap due to its unique capacity to evaluate stress in structure of complex shape, loading and material behavior. The authors developed the 3-dimensional numerical finite element model which is composed of totally 1179 elements off and 8 node blick. We also analyzed the micromotions at the bone-stem interface and mechanical behavior of existing bone prosthesis for a loading condition simulating the single leg stance. The result indicates that the values of relative motion for this well fit Multilock stem were $150{\mu}m$ in maximum, $82{\mu}m$ in minimum, and the largest relative motion developed in medial region of proximal femur with anterior-posterior direction. The proximal region of the bone was much larger in motion than the distal region and the stress pattern shows high stress concentration on the cortex near the tip of the stem. These findings indicates that the loading in the proximal femoral bone in the early postoperative situation can produce micromotions on the interface and clinically cementless TEA patient should not be allowed weight bearing strictly early in the postoperative period.

  • PDF