• 제목/요약/키워드: Three-dimensional numerical model

검색결과 1,578건 처리시간 0.025초

식물계를 고려한 지표-대기 상호작용의 수치모의 (Numerical modeling of Atmosphere - Surface interaction considering Vegetation Canopy)

  • 이화운;이순환
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.17-29
    • /
    • 1994
  • An one dimensional atmosphere-vegetation interaction model is developed to discuss of the effect of vegetation on heat flux in mesoscale planetary boundary layer. The canopy model was a coupled system of three balance equations of energy, moisture at ground surface and energy state of canopy with three independent variables of $T_f$(foliage temperature), $T_g$(ground temperature) and $q_g$(ground specific humidity). The model was verified by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HYPEX-MOBHLY experiment. As the result, both vegetation and soil characteristics can be emphasized as an important factor iii the analysis of heat flux in the boundary layer. From the numerical experiments, following heat flux characteristics are clearly founded simulation. The larger shielding factor(vegetation) increase of $T_f$ while decrease $T_g$. because vegetation cut solar radiation to ground. Vegetation, the increase of roughness and resistance, increase of sensible heat flux in foliage while decrease the latent heat flux in the foliage.

  • PDF

Spinning Detonation 파의 3차원 수치 해석 (Three-Dimensional Numerical Analysis of Spinning Detonation Wave)

  • 조덕래;최정열;원수희
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.205-212
    • /
    • 2006
  • Three-dimensional numerical study was carried out for the investigation of the detonation wave structures propagating in tubes. Fluid dynamics equations and conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The variable gas properties between unburned and burned states were considered by using variable specific heat ratio formulation. The unsteady computational results in three-dimension show the detailed mechanisms of rectangular and diagonal mode of detonation wave instabilities resulting same cell length but different cell width in smoked-foil record. The results for the small reaction constant shows the spinning mode of three-dimensional detonation wave dynamics, which was rarely observed in the previous numerical simulation of the detonation waves.

  • PDF

대동맥 분기관 모델 내 삼차원 유동: In vitro 실험과 수치해석의 비교 (Three-Dimensional Flow in an Aortic Bifurcation Model: Comparison of In Vitro Experiments and Numerical Simulation)

  • 김영호;서상호;유상신
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 춘계학술대회
    • /
    • pp.15-18
    • /
    • 1995
  • Three-dimensional steady and pulsatile flow experiments and numerical simulations have conducted to investigate the flow characteristics in the aortic bifurcation model. In vitro velocity measurements were made using both laser Doppler anemometry and pulsed Doppler ultrasound velocimetry. In this study, flow phenomena in the aortic bifurcation model are discussed extensively and the numerical results are compared with experimental results.

  • PDF

The Analysis of Three-dimensional Oxidation Process with Elasto-viscoplastic Model

  • Lee Jun-Ha;Lee Hoong-Joo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권6호
    • /
    • pp.215-218
    • /
    • 2004
  • This paper presents a three-dimensional numerical simulation for thermal oxidation process. A new elasto-viscoplastic model for robust numerical oxidation simulation is proposed. The three-dimensional effects of oxidation process such as mask lifting effect and corner effects are analyzed. In nano-scale process, the oxidant diffusion is punched through to the other side of the mask. The mask is lifted so the thickness of oxide region is greatly enhanced. The compressive pressure during the oxidation is largest in the mask corner of the island structure. This is because the masked area near the corner is surrounded by an area larger than the others in the island structure. This stress induces the retardation of the oxide growth, especially at the masked corner in the island structure.

3차원 아음속 난류 공동 유동에 대한 수치적 연구 (NUMERICAL ANALYSIS OF THREE-DIMENSIONAL SUBSONIC TURBULENT CAVITY FLOWS)

  • 최홍일;김재수
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Generally flight vehicles have many cavities such as wheel wells, bomb bays and windows on their external surfaces and the flow around these cavities makes separation, vortex, shock and expansion waves, reattachment and other complex flow phenomenon. The flow around the cavity makes abnormal and three-dimensional noise and vibration even thought the aspect ratio (L/D) is small. The cavity giving large effects to the flow might make large noise, cause structural damage or breakage, harm the aerodynamic performance and stability, or damage the sensitive devices. In this study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa-\omega$ turbulence model. The MPI(Message Passing Interface) parallelized code was used for calculations by PC-cluster. The cavity has the aspect ratios of 2.5, 3.5 and 4.5 with the W/D ratio of 2 for three-dimensional cavities. The Sound Pressure Level (SPL) analysis was done with FFT to check the dominant frequency of the cavity flow. The dominant frequencies were analyzed and compared with the results of Rossiter's formula and Ahuja& Mendoza's experimental datum.

축류송풍기의 저소음 설계에서 수치최적화기법들의 평가 (Assessment of Numerical Optimization Algorithms in Design of Low-Noise Axial-Flow Fan)

  • 최재호;김광용
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1335-1342
    • /
    • 2000
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations are used as governing equations, and standard k- ${\varepsilon}$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Two variables concerning sweep angle distribution are selected as the design variables. Performance of the final fan designed by the optimization was tested experimentally.

압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구 (NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE)

  • 이민재;김철완
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.

1차원 유동 네트워크 모델 및 다공성매질 모델을 이용한 판형 열교환기의 수치적 연구 (A Numerical Study on Plate-Type Heat Exchanger Using One-Dimensional Flow Network Model and Porous-Media Model)

  • 박재현;김민성;민준기;하만영
    • 설비공학논문집
    • /
    • 제28권1호
    • /
    • pp.21-28
    • /
    • 2016
  • A typical heat exchanger, found in many industrial sites, is made up of a large number of unitary cells, which causes difficulties when carrying out full-scale three-dimensional numerical simulations of the heat exchanger to analyze the aero-thermal performance. In the present study, a three-dimensional numerical study using a porous media model was carried out to evaluate the performance of the heat exchanger modelled in two different ways : full-scale and simplified. The pressure drop in the air side and gas side along with the overall heat transfer rate were calculated using a porous media model and the results were then compared to results obtained with a one-dimensional flow network model. The comparison between the results for two different geometries obtained using a porous media model and a one-dimensional flow network model shows good agreement between the simplified geometry and the one-dimensional flow network model. The full-scale geometry shows reasonable differences caused by the geometry such as sudden expansion and contraction.

Numerical study of ITZ contribution on diffusion of chloride and induced rebar corrosion: A discussion of three-dimensional multiscale approach

  • Tu, Xi;Pang, Cunjun;Zhou, Xuhong;Chen, Airong
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.69-80
    • /
    • 2019
  • Modeling approach for mesoscopic model of concrete depicting mass transportation and physicochemical reaction is important since there is growing demand for accuracy and computational efficiency of numerical simulation. Mesoscopic numerical simulation considering binder, aggregate and Interfacial Transition Zone (ITZ) generally produces huge number of DOFs, which is inapplicable for full structure. In this paper, a three-dimensional multiscale approach describing three-phase structure of concrete was discussed numerically. An effective approach generating random aggregate in polygon based on checking centroid distance was introduced. Moreover, ITZ elements were built by parallel expanding the surface of aggregates on inner side. By combining mesoscopic model including full-graded aggregate and macroscopic model, cases related to diffusivity and thickness of ITZ, volume fraction and grade of aggregate were studied regarding the consideration of multiscale compensation. Results clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of, rebar diameter, concrete cover and exposure period.

三次元數値모델을 使용한 東支那海의 定常均一風의 應力에 의한 海流의 算定 (Comoutation of Currents Driven by a Steady Uniform Wind Stress on the East China Sea using a Three-dimensional Numerical Model)

  • 최병호
    • 한국해양학회지
    • /
    • 제19권1호
    • /
    • pp.36-43
    • /
    • 1984
  • 複雜한 沿岸地形 및 水深變化를 考慮한 黃海 및 東支那海의 三次元 水動力學的 羞恥모델을 開發하여 定常均一風의 應力에 의한 海流의 手織分布를 算定하였다. 北西風 및 南西風의 秒速 약 10m에 該當하는 海面應力 1.6dyne/$\textrm{cm}^2$에 의한 陸棚體系의 反應을 調査하기 위한 手織實驗에서 動的 循環形態를 提示하고 檢討하였다.

  • PDF