• Title/Summary/Keyword: Three-dimensional motion analysis system

Search Result 225, Processing Time 0.027 seconds

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

The Analysis of Kinematic Difference in Glide and Delivery Phase for the High School Male Shot Putter's Records classified by Year (남자 고등부 포환던지기 선수들의 연도 별 기록에 따른 글라이드와 딜리버리 국면의 운동학적 차이)

  • Park, Jae-Myoung;Chang, Jae-Kwan;Kim, Tae-Sam
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.295-306
    • /
    • 2013
  • The purpose of this study was to provide high school male shot putters training methods of gliding and delivery motion through comparative analysis of kinematic characteristics. To accomplish this purpose, three dimensional motion analysis was performed for the subjects(PKC, KKH, YDL) who participated in high school male shot putter competition on 92nd (2011), 93rd (2013) National Sports Festival. The subjects were filmed by four Sony HXR-MC2000 video cameras with 60 fields/s. The three-dimensional kinematic data of the glide, conversion and delivery phase were obtained by Kwon3d 3.1 version. The data of the shoulder rotational angles and projection angles were calculated with Matlab R2009a. The following conclusions had been made. With the analysis of the gliding and stance length ratio, the gliding length was shorter at the TG than the SG with short-long technique but the gliding and stance length ratio was 46.8:53.2% respectively. The deviation of the shots trajectory from APSS(Athlete-plus-shot-system) revealed that the PKC showed similar to "n-a-b-c-I" of skilled S-shape type, KKH and YDL showed "n-a-d-f-I'" of unskilled type. Furthermore, they showed smaller radial distance from the central axis of the APSS and the shots were away from the linear trajectory. From this characteristics, The PKC who performed more TG than SG had shorter glide with S-shape of APSS(skilled type) showed the better record than others with technical skill. But KKH and YDL had bigger glide ratio with "n-a-d-f-I'" of unskilled type and improved their records with technical factor. The projection factor had an effect on the record directly. Because PKC maintained more lower glide and transition posture with momentum transfer through COG's rapid horizontal velocity respectively the subject possessed the characteristics of high horizontal and vertical velocity with large turning radius from shot putter to APSS.

Kinematic and Kinetic Analysis of Upper Limb Motions During Horticultural Activities

  • Lee, A-Young;Park, Sin-Ae;Kim, Jai-Jeong;So, Jae-Moo;Son, Ki-Cheol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.940-958
    • /
    • 2016
  • The objective of this study was to analyze the kinematic and kinetic characteristics of two horticultural activities: seed sowing and planting plant. Thirty-one male university students (aged $26.2{\pm}2.0years$) participated in this study. Kinematic factors (movement times, peak velocity, joint angles, and grasp patterns) were assessed using a three-dimensional motion analysis system while the subjects performed the horticultural activities. Kinetic factors (muscle activation of eight upper-limb muscles: the anterior deltoid, serratus anterior, upper trapezius, infraspinatus, latissimus dorsi, biceps brachii, brachioradialis, and flexor carpi radialis) were assessed using surface electromyography. The acts of seed sowing and planting plant were comprised of five tasks which included six types of phases: reaching, grasping, back transporting, forward transporting, watering, and releasing. The movement times, peak velocity, joint angles, and grasp patterns were significantly different across the tasks involved in the horticultural activities. All eight muscles of the upper limbs were utilized during the horticultural activities, and the muscle activation of the serratus anterior was the highest compared to that of the other muscles tested. The kinematic and kinetic characteristics of these horticultural activities showed similar characteristics to reaching and grasping rehabilitation training and daily living activities. The present study provides reference data for common horticultural activities using a kinematic and kinetic analysis.

Design Consideration of Optimal Seating Package by Generating Korean Manikins (한국형 마네킨 구현에 의한 최적 시팅 패키지 설계 치수 제안)

  • Lee, Yeong-Sin;Park, Se-Jin;Nam, Yun-Ui;Song, Geun-Yeong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.57-69
    • /
    • 1999
  • The primary objective of this research was to suggest the design dimensions of automotive seating package that has an important effect upon seating package design. To conduct the research, a set of manikin dimensions that are representative for Korean was determined by using a statistical scheme. With these dimensions, we generated nine manikins for male and female, respectively. Also, the preferred driving posture was investigated using the experimental setup. To find each joint angle for subjects, a driving monitoring system was developed and a three dimensional motion analysis system was employed. The joint angle for the subject was established and compared with related literature. With the generated manikins and each joint angle, the driving posture was simulated by using SAFEWORK that is a program to generate manikins. The positions and adjustable ranges from the accelerator heel point to the hip point and the steering wheel center point that are important variables in order to design seating package were suggested. Further research is needed to determine the seating package dimensions three dimensionally.

  • PDF

A Study on the Dynamic Impact of the AGT System Bridge, Caused by a Spall (스폴링에 의한 AGT 시스템 교량의 충격에 관한 연구)

  • Woo Sung-Won;Yun Suk-Koo;Lee An-Ho;Song Jae-Pil
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.342-347
    • /
    • 2004
  • The dynamic responses of a PSC bridge for automated guide-way transit system are investigated by analytical approach of bridge-vehicle interaction. In this study, the dynamic responses, concerned with a spall on the surface of bridge are emphasized. A simply supported pre-stressed concrete bridge is adopted as a numerical example. Dynamics of three-dimensional dynamic interaction system between bridges and vehicles is considered in this study. The FE method and modal analysis is used for modeling a bridge for dynamic response analysis. An AGT vehicle is idealized as a model with 11DOFs including lateral motion. It was found that the dynamic responses of bridge can be affected by a spall of surface. Especially, the vibrations are increased much more when a spall is exist.

  • PDF

Investigation of Kinematic Relation Between Actuator and Control Surface Deflection Using Aileron Linkage Analysis (에일러론 링키지 해석을 통한 작동기 변위와 조종면 변위의 상관관계 규명)

  • Lee, Sugchon;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.3
    • /
    • pp.24-28
    • /
    • 2012
  • An actuator should be added to a existing control linkage to make manned aircraft to unmanned. But it is quiet difficult to synchronize actuator with control surface because non-linear error necessarily occurs when four-bar linkage acts in three dimensional motion. In addition, in point of controller design view, while a real-time model needs the control surface deflection as its input, controller needs the actuator command as its output. Hence, the relation between both should be investigated. In this paper, the mathematical relation between actuator and control surface deflection investigated by kinematic analysis of a plant aircraft. The performance margin of the selected actuator also was verified.

The Motion of Carbon Plume in Ar Plasmas (Ar 플라즈마 상태에서의 탄소 입자 운동 모델링)

  • So, Soon-Youl;Chung, Hae-Deok;Lee, Jin;Park, Gye-Choon;Kim, Chang-Sun;Moon, Chae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.15-19
    • /
    • 2006
  • A pulsed laser ablation deposition (PLAD) technique is an excellent method for the fabrication of amorphous carbon (a-C) films, because it can generate highly energetic carbon clusters on a substrate. This paper was focused on the understanding and analysis of the motion of C particles in laser ablation assisted by Ar plasmas. The simulation has carried out under the pressure P=50 mTorr of Ar plasmas. Two-dimensional hybrid model consisting of fluid and Monte-Carlo models was developed and three kinds of the ablated particles which are carbon atom (C), ion ($C^+$) and electron were considered in the calculation of particle method. The motions of energetic $C^+$ and C deposited upon the substrate were investigated and compared. The interactions between the ablated particles and Ar gas plasmas were discussed.

  • PDF

The Correlation of the Pressure of Biofeedback Unit and Lumbopelvic Motion During Straight Leg Raising in Healthy Subjects (정상인에서 수동적인 뻗은다리올림 시 생체되먹임 장치의 압력과 허리골반 움직임의 상관관계)

  • Jung, Do-young
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.12-18
    • /
    • 2018
  • Background: Passive straight leg raising (PSLR) is the common clinical test to measure of hamstring muscle length. Hip flexion angle contributes to change the lumbopelvic rotation during PSLR. Pressure biofeedback unit (PBU) is commonly used to detect lumbopelvic movement during lower limb movements. Thus, there may be the relationship between pressure of PBU and lumbopelvic motion during PSLR. Objects: The objective of this study was to determine the relationship between pressure of PBU and lumbopelvic motion during PSLR. Methods: Thirty two subjects participated in this study. A three-dimensional motion analysis system were used to measure the lumbopelvic angle during PSLR, while recording the pressure of PBU according to angle of PSLR by 10 degree increments. Pearson product moment correlations and linear regression analysis were used to describe the relationship between variables. Results: The results showed that there was a significant relationship between the lumbopelvic and angle of PSLR (Pearson's r=.83, p<.05), between the pressure of PBU and angle of PSLR (Pearson's r=.75, p<.05), and between lumbopelvic motion and pressure of PUB (Pearson's r=.83, p<.05). Linear regression equation using lumbopevic angle as an independent factor was as follows: Pressure of PBU = 47.35 + (2.55 ${\times}$ angle of lumbopelvic motion) ($R^2=.69$, p<.05). Conclusion: Results of the present study indicate that pressure of PBU can be used to indirectly detect the amounts of lumbobevic motion during muscle length test or stretching of hamstring.

Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

  • Choi, Jisoo;Kim, Sohee;Shin, Dong-Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.91-97
    • /
    • 2016
  • Objective : To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods : A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results : The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion : The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study.

A NUMERICAL STUDY FOR IMPROVING PERFORMANCE ON PAINT DRYING SYSTEM OF A VEHICLE (차량 도장 건조 성능 향상을 위한 수치해석 연구)

  • Lee, Seung-Jae;Choi, Jong-Rak;Hur, Nahm-Keon;Kim, Hee-Soo
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2011
  • In this study, three-dimensional transient numerical simulations were carried out for a paint drying system of vehicle. The vehicle on assembly line passes through the drying system consisting of hot and cool air blow region. For the moving motion of the vehicle, moving of inlet boundary condition and MRF technique are used. The transient distribution of temperature and velocity in the drying system were predicted numerically. In order to validate the numerical results, transient distribution of the vehicle surface temperature was compared with experimental data, showing a good agreement. As a result of present study, optimal operating condition of the drying system are to be suggested.