• 제목/요약/키워드: Three-dimensional models

Search Result 1,598, Processing Time 0.029 seconds

Three-dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Man;Kim, Yu-Sung;Kim, Myung-Kuk;Chen, Seung-Bae;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.105-113
    • /
    • 2007
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and full three-dimensional models. The present computational method is based on the general finite element method with rotating gyroscopic effects of the rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis tools and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test data conducted herein.

ONE-DIMENSIONAL TREATMENT OF MOLECULAR LINE RADIATIVE TRANSFER IN CLUMPY CLOUDS

  • Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.6
    • /
    • pp.183-190
    • /
    • 2021
  • We have revisited Monte Carlo radiative transfer calculations for clumpy molecular clouds. Instead of introducing a three-dimensional geometry to implement clumpy structure, we have made use of its stochastic properties in a one-dimensional geometry. Taking into account the reduction of spontaneous emission and optical depth due to clumpiness, we have derived the excitation conditions of clumpy clouds and compared them with those of three-dimensional calculations. We found that the proposed approach reproduces the excitation conditions in a way compatible to those from three-dimensional models, and reveals the dependencies of the excitation conditions on the size of clumps. When bulk motions are involved, the applicability of the approach is rather vague, but the one-dimensional approach can be an excellent proxy for more rigorous three-dimensional calculations.

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

Three-dimensionally Simulated Monofilament Fabrics with Changes in Warp/Filling Yarn Diameter

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.10 no.6
    • /
    • pp.28-37
    • /
    • 2006
  • The purpose of this work is to present three-dimensional models of plain fabrics having various warp and filling yarn diameters. In order to simulate a woven fabric, a 3-dimensional CAD software with NURBS modeling capability was used. Final rendering was performed on the fabric model. It was demonstrated that the changes in yarn diameter could be three-dimensionally modeled through the use of fabric geometry and the 3D CAD. A short RhinoScript program was composed to implement the data importing and model building on the 3D CAD.

Development of Computerized Anthropometric Analysis Model in Cleft Lip Nasal Deformity Using 3D Laser Scanned Facial Cast Model (구순구개열의 비구순변형에서 3차원 입체 laser 스캐너를 이용한 계측분석 프로그램의 개발)

  • Kim, Suk Wha;Park, Jong Lim;Kim, Jae Chan;Baek, Seung Hak;Son, Woo Gil
    • Archives of Plastic Surgery
    • /
    • v.35 no.3
    • /
    • pp.303-308
    • /
    • 2008
  • Purpose: The purpose of this study is to develop three-dimensional computerized anthropometry(3DCA) and to compare its reliability and accuracy 3DCA with manual anthropometry(MA) for measurement of lips and nasal deformities in unilateral cleft lips and palate(UCLP) patients. Methods: Samples were consisted of six UCLP patients whose facial plaster models were available immediately before and 3 months after the cleft lip surgery. MA of the facial plaster models was carried out using an electronic caliper. In 3DCA, three-dimensional auto-measuring program was used to digitize landmarks and to measure three-dimensional virtual facial models (3DVFM), which was generated with a laser scanner and 3D virtual modeling program. Intraclass correlation coefficients(ICC) were calculated to evaluate reliability and reproducibility of the variables in both methods, and Wilcoxon's signed rank test was done to investigate the difference in values of the same variables of facial models of each patient between two methods. Results: All ICC values were higher than 0.8, so both methods could be considered reliable. Although most variables showed statistical differences between two methods(p<0.05), differences between mean values were very small and could be considered not significant in clinical situation. Conclusion: In clinical situation, 3DCA can be an objective, reliable and accurate tool for evaluation of lips and nasal deformities in the cleft patients.

Navigable Space-Relation Model for Indoor Space Analysis (실내 공간 분석을 위한 보행 공간관계 모델)

  • Lee, Seul-Ji;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.75-86
    • /
    • 2011
  • Three-dimensional modeling of cities in the real-world is an essential task for city planning and decision-making. And many three-dimensional city models are being developed with the development of wireless Internet and location-based services that identify the location of users and provide the information increases for consumers. Especially, in case of urban areas of Korea, indoor space modeling as well as outdoor is needed due to the high-rise buildings densities. Also location-based services should be provided through spatial analysis such as the shortest path based on a space model. Many studies of three-dimensional city models are feature models. In a feature model, space is represented by combining primitives, and relationships among spaces are represented only if shared primitives are detected. So relationships between complex three-dimensional objects in space is difficult to be defined through the feature models. In this study, Navigable space-relation model(NSRM) is developed, which is topological data model for efficient representation of spatial relationships between objects based on the network structure.

New classification of lingual arch form in normal occlusion using three dimensional virtual models

  • Park, Kyung Hee;Bayome, Mohamed;Park, Jae Hyun;Lee, Jeong Woo;Baek, Seung-Hak;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.45 no.2
    • /
    • pp.74-81
    • /
    • 2015
  • Objective: The purposes of this study were 1) to classify lingual dental arch form types based on the lingual bracket points and 2) to provide a new lingual arch form template based on this classification for clinical application through the analysis of three-dimensional virtual models of normal occlusion sample. Methods: Maxillary and mandibular casts of 115 young adults with normal occlusion were scanned in their occluded positions and lingual bracket points were digitized on the virtual models by using Rapidform 2006 software. Sixty-eight cases (dataset 1) were used in K-means cluster analysis to classify arch forms with intercanine, interpremolar and intermolar widths and width/depth ratios as determinants. The best-fit curves of the mean arch forms were generated. The remaining cases (dataset 2) were mapped into the obtained clusters and a multivariate test was performed to assess the differences between the clusters. Results: Four-cluster classification demonstrated maximum inter-cluster distance. Wide, narrow, tapering, and ovoid types were described according to the intercanine and intermolar widths and their best-fit curves were depicted. No significant differences in arch depths existed among the clusters. Strong to moderate correlations were found between maxillary and mandibular arch widths. Conclusions: Lingual arch forms have been classified into 4 types based on their anterior and posterior dimensions. A template of the 4 arch forms has been depicted. Three-dimensional analysis of the lingual bracket points provides more accurate identification of arch form and, consequently, archwire selection.

A Study on Presentation Methods for Formation Ideas of Interior Spaces (실내 공간 형상화를 위한 아이디어 표현 방법에 관한 연구)

  • Lee, Jong-Ran
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.6 no.2
    • /
    • pp.17-23
    • /
    • 2006
  • The purpose of this study was to investigate how student felt the strengths and shortness of presentation methods for formation of interior spaces. For this study, the process of the interior architecture design class was divided into three stages: the programming. the design development, and the design completion. In the design development stage, students used presentation methods: hand sketch, scale model, computer modeling, and virtual realty. The strengths of hand sketch was that quick expression. Models provided three-dimensional feelings. Computer modelling provide realistic color and texture. Virtual reality provided three-dimensional immersion and real scale. It is effective that students collect brain storm images using quick hand sketch in the beginning of design development stage. After that, they compose interior spaces in study models with small scale. Watching the models, they design details of spaces by using hand sketch and computer modelling. Using virtual reality, they can check the scale and circulation. Finally, they complete computer modelling by texture mapping and check the final design in virtual reality.

  • PDF

A Study on the Generation and Application of Photometric Data for Lighting Simulation (조명 시뮬레이션을 위한 측광데이터의 생성과 적용)

  • Hong, Sung-De
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.6 no.2
    • /
    • pp.25-30
    • /
    • 2006
  • The purpose of this study was to investigate how student felt the strengths and shortness of presentation methods for formation of interior spaces. For this study, the process of the interior architecture design class was divided into three stages: the programming. the design development, and the design completion. In the design development stage, students used presentation methods: hand sketch, scale model, computer modeling, and virtual realty. The strengths of hand sketch was that quick expression. Models provided three-dimensional feelings. Computer modelling provide realistic color and texture. Virtual reality provided three-dimensional immersion and real scale. It is effective that students collect brain storm images using quick hand sketch in the beginning of design development stage. After that, they compose interior spaces in study models with small scale. Watching the models, they design details of spaces by using hand sketch and computer modelling. Using virtual reality, they can check the scale and circulation. Finally, they complete computer modelling by texture mapping and check the final design in virtual reality.

  • PDF