• Title/Summary/Keyword: Three-dimensional integral imaging

Search Result 95, Processing Time 0.031 seconds

An improved 2D/3D convertible integral imaging with two parallel display devices

  • Choi, Hee-Jin;Park, Jae-Hyeung;Kim, Joo-Hwan;Cho, Seong-Woo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.46-49
    • /
    • 2005
  • In this paper, a novel 2D/3D convertible display system based on integral imaging is proposed. Combining two liquid crystal display panels with integral imaging, it is possible to convert the display between two-dimensional mode and three-dimensional mode without mechanical movement. The proposed method is proven by preliminary experiments.

  • PDF

An integrated elastomer substrate with a lens array and pixel elements for three-dimensional liquid crystal displays

  • Hong, Jong-Ho;Kim, Yeun-Tae;Kim, Yun-Hee;Lee, Byoung-Ho;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.55-59
    • /
    • 2012
  • In this paper, a concept of an integrated elastomer substrate for a three-dimensional (3D) liquid crystal display based on the integral-imaging method is presented. The elemental lens array and columnar spacers were integrated into one of the two substrates, an elastomer substrate, through an imprinting process. The integrated elastomer substrate was capable of maintaining the uniform liquid crystal (LC) cell gap and promoting homeotropic LC alignment without any surface treatment. The monolithic approach reported herein will provide a key component for 3D displays with enhanced portability through a more than 40% weight reduction compared with the conventional integral-imaging method.

Viewing Angle Enhancement of Light Direction Controllable Integral Imaging Three-dimensional Display System by Moving Aperture in 4-f Illumination Optics

  • Shin, Min-Young;Park, Jae-Hyeung;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1341-1344
    • /
    • 2009
  • A novel method to control the viewing direction by moving aperture location in 4-f illumination optics to control light direction is proposed. Based on integral imaging principle, the relayed point light sources by 4-f optics are modulated by a spatial light modulator, displaying three-dimensional images. In the proposed method, we locate the aperture, which acts as a band pass filter, around an optic axis to control the light direction. Resultantly, assuming that we know the viewer position by a tracking system, we can display appropriate three-dimensional images over large viewing angle.

  • PDF

Two-dimensional / Three-dimensional convertible modified integral imaging system using functional polarizing film (기능성 편광필름을 이용한 2차원/3차원 전환가능 변형 집적 영상 시스템)

  • Song, Byeong-Seop;Park, Sun-Gi;Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.6-7
    • /
    • 2009
  • We proposed the two-dimensional (2D) / three-dimensional (3D) convertible modified integral imaging system using functional polarizing film named $imazer^{TM}$, which transfer or scatter the incident light ray according to the polarizing direction of ray. When the incident light rays transfer to $imazer^{TM}$, the rays generate 3D image through the process of the modified integral imaging system. However, the scattered light rays generate 2D image through the simple backlight scheme when the incident rays are scattered by the film. The proposed method can be implemented the partial 3D display system without any mechanical movements. In this paper, we propose and verify our system using some basic experiments and its results.

  • PDF

Properties of resolution improvement for three-dimensional integral imaging using dynamic microlens array (동적 마이크로 렌즈 배열을 사용한 3차원 완전 결상에서의 해상도 개선 특성)

  • 조명진;김복수;장주석
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2004
  • We investigate characteristics of viewing resolution improvement in three-dimensional integral imaging, when a dynamic lens array method is adopted. We show that the viewing resolution changes for different moving directions and distances of the lens array through computer-synthesized integral imaging. From this study, optimal moving conditions of the lens array for efficient viewing resolution improvement can be determined.

Information Authentication of Three-Dimensional Photon Counting Double Random Phase Encryption Using Nonlinear Maximum Average Correlation Height Filter

  • Jang, Jae-Young;Inoue, Kotaro;Lee, Min-Chul;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.228-233
    • /
    • 2016
  • In this paper, we propose a nonlinear maximum average correlation height (MACH) filter for information authentication of photon counting double random phase encryption (DRPE). To enhance the security of DRPE, photon counting imaging can be applied because of its sparseness. However, under severely photon-starved conditions, information authentication of DRPE may not be implemented successfully. To visualize the photon counting DRPE, a three-dimensional imaging technique such as integral imaging can be used. In addition, a nonlinear MACH filter can be utilized for helping the information authentication. Therefore, in this paper, we use integral imaging and nonlinear MACH filter to implement the information authentication of photon counting DRPE. To verify our method, we implement optical experiments and computer simulation.

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.

Analysis of errors on the depth perception through binocular disparity in integral imaging

  • Kim, Joo-Hwan;Kim, Yun-Hee;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1322-1325
    • /
    • 2006
  • Integral imaging is a three-dimensional display method which has full parallax and continuous viewpoints. However, we found an error between the depth expressed by integral imaging and the depth perceived by the observer through binocular disparity. We analyze the depth perception errors of the threedimensional image constructed by integral imaging.

  • PDF

Computational reconstruction techniques in integral imaging by use of a lenslet array

  • Shin, Dong-Hak;Kim, Eun-Soo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1588-1591
    • /
    • 2005
  • In this paper, we propose novel computational reconstruction technique of three-dimensional objects in integral imaging by use of a lenslet array. We applied our technique to two different integral imaging systems according the distance between lenslet array and elemental image plane. Experimental results are presented and discussed as well.

  • PDF

Analysis of the depth limitation for curved lens array system based on integral imaging

  • Kim, Yun-Hee;Park, Jae-Hyeung;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1595-1598
    • /
    • 2005
  • Integral imaging attracts much attention as an autostereoscopic three-dimensional (3D) display technique for its many advantages. Recently the method that uses a curved lens array with a curved screen has been reported to overcome the limitation of viewing angle in integral imaging. This method widens the viewing angle remarkably. However, to understand the proposed system we need to know how the depth is limited in the proposed method also. We analyze the depth limitation and show the simulation results.

  • PDF