• Title/Summary/Keyword: Three-dimensional image processing

Search Result 325, Processing Time 0.031 seconds

Developemet of noncontact velocity tracking algorithm for 3-dimensional high speed flows using digital image processing technique (디지털 화상처리를 이용한 유동장의 비접촉 3차원 고속류 계측법의 개발)

  • 도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.259-269
    • /
    • 1999
  • A new algorithm for measuring 3-D velocity components of high speed flows were developed using a digital image processing technique. The measuring system consists of three CCD cameras an optical instrument called AOM a digital image grabber and a host computer. The images of mov-ing particles arranged spatially on a rotation plate are taken by two or three CCD cameras and are recorderd onto the image grabber or a video tape recoder. The three-dimensionl velocity com-ponents of the particles are automatically obtained by the developed algorithm In order to verify the validity of this technique three-dimensional velocity data sets obtained from a computer simu-lation of a backward facing step flow were used as test data for the algorithm. an uncertainty analysis associated with the present algorithm is systematically evaluated, The present technique is proved to be used as a tookl for the measurement of unsteady three-dimensional fluid flows.

  • PDF

A ROBUST METHOD MINIMIZING DIGITIZATION ERRORS IN SKELETONIZATION OF THREE DIMENSIONAL BINARY SEGMENTED IMAGE

  • Shin, Hyun-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.425-434
    • /
    • 2004
  • Pattern recognition in three dimensional image is highly sensitive to assigned value and formation of voxels (pixels for two dimension case). However, occurred while digital imaging, digitization error leads to unpredictable noises in image data. Skeletonization, a powerful tool of pattern recognition, is sensitively dependent on boundary formation. Without successful controlling of the noises, the results of skeletonization can not be allowed as a stable solution. To minimize the effect of noises affecting to boundary formation, we developed a robust processing method useful in skeletonization technique for pattern recognition. Finally, we provide rigorous test results achieved throughout simulation on analytic three dimensional image.

A Study on Three-Dimensional Motion Tracking Technique for Floating Structures Using Digital Image Processing (디지털 화상처리를 이용한 부유식 구조물의 3차원운동 계측법에 관한 연구)

  • Jo, Hyo-Je;Do, Deok-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.121-129
    • /
    • 1998
  • A quantitative non-contact multi-point measurement system is proposed to the measurement of three-dimensional movement of floating vessels by using digital image processing. The instantaneous three-dimensional movement of a floating structure which is floating in a small water tank is measured by this system and its three-dimensional movement is reconstructed by the measurement results. The validity of this system is verified by position identification for spatially distributed known positional values of basic landmarks set for the camera calibration. It is expected that this system is applicable to the non-contact measurement for an unsteady physical phenomenon especially for the measurement of three-dimensional movement of floating vessels in the laboratory model test.

  • PDF

Development of Simulation Model for Diffusion of Oil Spill in the Ocean (III) - Oil-droplet spreading measurement using 3-dimensional digital image processing technique- (해양유출기름의 확산 시뮬레이션 모델개발 (III) -3차원 디지털화상처리를 이용한 유적의 퍼짐 계측 -)

  • 이중우;도덕희;김기철;강신영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • A three-dimensional digital image processing technique is proposed to quantitatively predict the dispersion phenomena of oil droplet onto the surface of the water. This technique is able to get the dispersion rate of an oil droplet three-dimensionally just below the surface of the water over time. The obtained dispersion rate obtained through this technique is informative to the investigation into the relationship among the gravity, surface tensions between oil, water, and air. This technique is based upon the three-dimensional PIV(Particle Imaging Velocimetry) technique and its system mainly consists of a three CCD(Charge Coupled Device) cameras, an image grabber, and a host computer in which an image processing algorithm is adopted for the acquisition of dispersion rate oil an oil droplet.

  • PDF

A Study on Estimation of inner and Wall Pressure Distribution by 3-Dimensional velocity Measurement using PIV (PIV를 이용한 3차원 속도계측에 의한 유동장의 공간 및 벽면압력 분포 추정에 관한연구)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • A flow measurement system which is able to measure the instantaneous three-dimensional velocity components and the pressure distribution of fluid flows is developed using a digital image processing system and the stereoscopic photogrammetry. This system consists of two TV cameras a digital image processor and a 32-bit microcomputer. The capability of the developed system is verified by a preliminary test in which three-dimensional displancements of moving particles arranged on a rotating plate are tracked automatically. The constructed system is through the measurement and spatial pressure distribution is also obtained. The measurement uncertainty of this system is evaluated quantitatively. The present technique is applicable to the measurement of an unsteady fluid phenomenon especially to the measurement of three-dimensional velocity field of a complex flow.

  • PDF

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

Three-dimensional measurement of object surface and moving particles using at TV camera

  • Kawasue, Kikuhito;Iwamoto, Isamu;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1302-1305
    • /
    • 1997
  • A new approach to the three-dimensional measurement of the object surface and moving particles is introduced. A single TV camera with an apparatus to add the circular bias to the image enables us to record the three-dimensional information of measuring points as streaks on a single image. Every shaped of the streak on the image plane is related to the position of the measuring point. the information is extracted form the image using an image processign technique.

  • PDF

Development of Facial Palsy Grading System with Three Dimensional Image Processing (3차원 영상처리를 이용한 안면마비 평가시스템 개발)

  • Jang, M.;Shin, S.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • The objective grading system for the facial palsy is needed. In this study, the facial palsy grading system was developed with combination of three dimensional image processing and Nottingham scale. The developed system is composed of 4 parts; measurement part, image processing part, computational part, facial palsy evaluation & display part. Two web cam were used to get images. The 8 marker on face were recognized at image processing part. The absolute three dimensional positions of markers were calculated at computational part. Finally, Nottingham scale was calculated and displayed at facial palsy evaluation & display part. The effects of measurement method and position of subject on Nottingham scale were tested. The markers were measured with 2-dimension and 3-dimension. The subject was look at the camera with $0^{\circ}$ and $11^{\circ}$ rotation. The change of Scale was large in the case of $11^{\circ}$ rotation with 2-dimension measurement. So, the developed system with 3-dimension measurement is robust to the orientation change of subject. The developed system showed the robustness of grading error originated from subject posture.

  • PDF

Implementation of eye-controlled mouse by real-time tracking of the three dimensional eye-gazing point (3차원 시선 추적에 의한 시각 제어 마우스 구현 연구)

  • Kim Jae-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.209-212
    • /
    • 2006
  • This paper presents design and implementation methods of the eye-controlled mouse using the real-time tracking of the three dimensional gazing point. The proposed method is based on three dimensional data processing of eye images in the 3D world coordinates. The system hardware consists of two conventional CCD cameras for acquisition of stereoscopic image and computer for processing. And in this paper, the advantages of the proposed algorithm and test results are described.

  • PDF

Design and Implementation of Real-time three dimensional Tracking system of gazing point (삼차원 응시 위치의 실 시간 추적 시스템 구현)

  • 김재한
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2605-2608
    • /
    • 2003
  • This paper presents design and implementation methods of the real-time three dimensional tracking system of the gazing point. The proposed method is based on three dimensional data processing of eye images in the 3D world coordinates. The system hardware consists of two conventional CCD cameras for acquisition of stereoscopic image and computer for processing. And in this paper, the advantages of the proposed algorithm and test results ate described.

  • PDF