• 제목/요약/키워드: Three-dimensional hydraulic model

검색결과 173건 처리시간 0.03초

다원주 파일군 구조물에 의한 항내 정온도 향상에 관한 실험적 연구 (An Experimental Study on the improvement of harbor tranquility by Multi-cylinder piles Structure)

  • 이상화;장은철;정동화
    • 한국해안해양공학회지
    • /
    • 제19권1호
    • /
    • pp.66-72
    • /
    • 2007
  • 연안역의 파랑을 효율적으로 제어하고 경제적으로 유리한 구조물로서 다원주 파일군을 제안하고, 이 구조물의 수리학적 특성을 검토하기 위해 3차원 수리모형실험을 수행하였다. 이 실험에서는 콘크리트를 사용한 기존의 파제제와 아크릴로 제작된 다원주 파일 형태를 이용한 구조물을 동일 평면배치 상에서 파고분석을 통해 파랑제어 및 항내 정온도 향상 여부를 분석하였다. 결과적으로 동일 평면배치 상에서의 항내 정온도 효과는 파제제 설치 > 교차 배열 다원주 파일군 설치 > 정방형 배열 다원주 파일군 설치 순으로 나타났다.

Thermal-hydraulic 0D/3D coupling in OpenFOAM: Validation and application in nuclear installations

  • Santiago F. Corzo ;Dario M. Godino ;Alirio J. Sarache Pina;Norberto M. Nigro ;Damian E. Ramajo
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1911-1923
    • /
    • 2023
  • The nuclear safety assessment involving large transient simulations is forcing the community to develop methods for coupling thermal-hydraulics and neutronic codes and three-dimensional (3D) Computational Fluid Dynamics (CFD) codes. In this paper a set of dynamic boundary conditions are implemented in OpenFOAM in order to apply zero-dimensional (0D) approaches coupling with 3D thermal-hydraulic simulation in a single framework. This boundary conditions are applied to model pipelines, tanks, pumps, and heat exchangers. On a first stage, four tests are perform in order to assess the implementations. The results are compared with experimental data, full 3D CFD, and system code simulations, finding a general good agreement. The semi-implicit implementation nature of these boundary conditions has shown robustness and accuracy for large time steps. Finally, an application case, consisting of a simplified open pool with a cooling external circuit is solved to remark the capability of the tool to simulate thermal hydraulic systems commonly found in nuclear installations.

열수력 기기해석용 CUPID 코드 개발 및 평가 전략 (THE DEVELOPMENT AND ASSESSMENT STRATEGY OF A THERMAL HYDRAULICS COMPONENT ANALYSIS CODE)

  • 박익규;조형규;이재룡;김정우;윤한영;이희동;정재준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.30-48
    • /
    • 2011
  • A three-dimensional thermal-hydraulic code, CUPID, has been developed for the analysis of transient two-phase flows at component scale. The CUPID code adopts a two-fluid three-field model for two-phase flows. A semi-implicit two-step numerical method was developed to obtain numerical solutions on unstructured grids. This paper presents an overview of the CUPID code development and assessment strategy. The governing equations, physical models, numerical methods and their improvements, and the systematic verification and validation processes are discussed. The code couplings with a system code, MARS, and, a three-dimensional reactor kinetics code, MASTER, are also presented.

삼각형 내부냉각유로에 설치된 다양한 형태의 리브에 관한 수치해석적 연구 (Numerical Study on Various Ribs in a Triangular Internal Cooling Channel)

  • 박민정;문미애;김광용
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.19-26
    • /
    • 2012
  • In this paper, a parametric study on ribs which are installed in an equilateral triangular internal cooling channel is presented. The numerical analysis of the flow structure and heat transfer characteristics is performed using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The numerical results are obtained at Reynolds number, 20,000. The parametric study is performed for the parameters, the angle of a rib, rib pitch-to-hydraulic diameter ratio, rib width-to-hydraulic diameter ratio, and rib height-to-hydraulic diameter ratio. The computational results are validated with the experimental data for area-averaged Nusselt number.

Analysis on Characteristic of Pressure Fluctuation in Hydraulic Turbine with Guide Vane

  • Shi, FengXia;Yang, JunHu;Wang, XiaoHui
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.237-244
    • /
    • 2016
  • An unsteady three-dimensional simulation based on Reynolds time-averaged governing equation and RNG $k-{\varepsilon}$ turbulence model, was presented for pump-as-turbine, the pressure fluctuation characteristic of hydraulic turbine with guide vane was obtained. The results show that the time domains of pressure fluctuation in volute change periodically and have identical cycles. In volute tongue and inlet pressure fluctuations are light, while in dynamic and static coupling interface pressure fluctuations are serious; In impeller blade region the pressure fluctuation of pressure surface are lighter than that of suction surface. The dominant frequencies of pressure fluctuation concentrate in low frequency region, and concentrate within 2 times of the blade passing frequency.

실험결과를 이용한 굴삭기 작업장치부의 동역학 해석 (Dynamic analysis of an excavator manipulator by experimental data)

  • 홍제민;김희원;김동해
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.711-716
    • /
    • 2003
  • This paper presents the inverse dynamic analysis of the hydraulic excavator manipulator based on the experimental data. A three dimensional rigid multi-body model of the hydraulic excavator manipulator was built up. Inverse dynamic analysis for typical operation mode was carried out by the ADAMS program. In order to verify the analysis results with the measured, the hydraulic pressure and displacement of the cylinders were measured and the dynamic analysis was carried out using experimental data. From the results of the cylinder driving forces, good agreements are obtained between the analysis and the measurement.

  • PDF

핵연료 집합체에서의 열유동 특성에 관한 연구 (A Study on Thermal-hydraulic Characteristics for Nuclear Fuel Rod Bundle)

  • 유성연;정민호;김만웅;최영준;김현군
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.3-8
    • /
    • 2001
  • For the successful design of nuclear reactor, it is very important to investigate thermal-hydraulic characteristics of fuel rod bundle. Fluid flow and heat transfer in the non-circular cross-section of nuclear fuel rod bundle are different from those found in common circular tube. And complex three dimensional flow including secondary and vortex flow, is formed around the bundles. The purpose of this research is to examine how geometries and flow conditions affect heat transfer in fuel rod bundle. Design data for nuclear fuel rod bundle and structure are surveyed, and $3{\times}3$ sub-channel model is adopted in this study. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions.

  • PDF

Thermal-Hydraulic Analysis of A Wire-Spacer Fuel Assembly

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.473-478
    • /
    • 2004
  • This work presents the Thermal Hydraulic analysis has been performed for a 19-pin wire-spacer fuel assembly using three-dimensional Reynolds-averaged Navier-Stokes equations. SST model is used as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary condition at inlet and outlet of the calculation domain. The overall results far a preliminary calculation show a good agreement with the experimental observations. It has been found that the major unidirectional flows are the axial velocity in sub-channels and the peripheral sweeping flows and the velocities are found to be following a cyclic path of period equal to the wire-wrap pitch. The temperature is found to be maximum in the central region and also, there exist a radial temperature gradient between the fuel rods. The major advantage of performing this kind of analysis is the prediction of thermal-hydraulic behavior of a fuel assembly with much ease.

  • PDF

시험자료를 이용한 굴삭기의 동역학 해석 (Dynamic analysis of an excavator using experimental data)

  • 유완석;김외조;이만형;윤경화
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1150-1157
    • /
    • 1994
  • This paper presents dynamic analysis of a hydraulic excavator based on experimental data. A three dimensional multibody model of a hydraulic excavator is modeled for the computer simulation. The hydraulic pressures acting on the cylinders are measured from experiments, and the forces exerting on the cylinders are calculated from the measured pressures. Using these forces, the dynamic analysis of the excavator is carried out to regenerate the motion in the computer simulation. A proper operation scheme is assumed to match the computational result and the experiment. The DADS program is used for the dynamic analysis.

봄철 강릉지역에서 발생하는 강풍에 대한 연구 (Severe Downslope Windstorms of Gangneung in the Springtime)

  • 장욱;전혜영
    • 대기
    • /
    • 제18권3호
    • /
    • pp.207-224
    • /
    • 2008
  • Severe downslope windstorms observed at Gangneung, Korea in the springtime during the last 30 years are studied to understand their generation mechanisms. 92 severe wind cases are selected for which the maximum instantaneous wind speeds exceed two standard deviation of total mean plus ($18.7ms^{-1}$). They are categorized into the three mechanisms (hydraulic jump, partial reflection, and critical-level reflection) proposed in previous studies based on the flow condition, which is calculated using the wind and temperature profile observed at one upstream rawinsonde station, Osan. Among the three, partial reflection is found to be the most frequent mechanism for the last 30 years (1976 - 2005). To understand the role of inversion in generating severe downslope windstorms, horizontal velocity perturbation was calculated analytically for the atmosphere with an inversion layer. It turned out that the intensity of downslope wind was increased by inversion layer of specific heights, which are well matched with the observations. For better understanding the generation mechanisms, two-dimensional numerical simulations are conducted for the 92 severe wind cases using the ARPS model. In most simulations, surface wind speed exceeds the value of the severe-wind criterion, and each simulated case can be explained by its own generation mechanism. However, in most simulations, the simulated surface wind speed is larger than the observed, due to ignoring the flow-splitting effect in the two-dimensional framework.