• 제목/요약/키워드: Three-dimensional heat transfer

검색결과 385건 처리시간 0.031초

나선형 냉각 자켓의 유량에 따른 냉각 특성 (A Study on the Cooling Characteristics of Helical Type Cooling-Jacket according to the Flow Rate)

  • 김태원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.231-235
    • /
    • 1999
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. for the analysis, three dimensional model for the cooling jacket is built by using finite volume method. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficients on the boundary. The temperature distributions and the cooling characteristics are analyzed by using the commercial software FLUENT. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket. Cooling performance of cooling jacket is good in condition that stream-wise cross section's horizontal length is close to its vertical one and flow rate is high. This results show that heat transfer is dominated by velocity profile and heat transfer area.

  • PDF

V-형 사각리브에 의한 난류열전달 해석 (Analysis of turbulent heat transfer over V-shaped ribs)

  • 이영모;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.169-172
    • /
    • 2005
  • Numerical analysis of turbulent flow in three-dimensional channel with V-shaped ribs extruded on both walls has been carried out. Reynolds-averaged Navier-Stokes are calculated for analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for heat transfer rate show good agreements with experimental data.

  • PDF

원형 핀이 부착된 실린더 주위의 유동 및 열전달에 관한 수치적 연구 (Numerical Study on the Fluid Flow and Heat Transfer Past a Cylinder with a Periodic Array of Circular Fins)

  • 윤현식;전호환;이동혁
    • 대한조선학회논문집
    • /
    • 제43권3호
    • /
    • pp.285-293
    • /
    • 2006
  • Three-dimensional and time-dependent solution for the fluid flow and heat transfer past a circular cylinder with fins is obtained using accurate and efficient spectral methods. A Fourier expansion with a corresponding uniform grid is used along the circumferential direction. A spectral multi-domain method with a corresponding Chebyshev collocation is used along r-z plane to handle fins attached to the surface of a circular cylinder. At the Reynolds number of 300 based on a cylinder diameter, results with fins are compared with those without fins in order to see the effects of the presence of fins on three-dimensional and unsteady fluid flow and heat transfer past a bluff body. The detail structures of fluid flow and temperature field are obtained as a function of time to investigate how the presence of fins changes heat transfer mechanism related to the vortical structure in the wake region.

반응면 기법을 이용한 경사진 리브가 부착된 삼차원 열전달유로의 최적설계 (Design Optimization of Three-Dimensional Channel Roughened by Oblique Ribs Using Response Surface Method)

  • 김홍민;김광용
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.879-886
    • /
    • 2004
  • A numerical optimization has been carried out to determine the shape of the three-dimensional channel with oblique ribs attached on both walls to enhance turbulent heat transfer. The response surface based optimization is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Numerical results fur heat transfer rate show good agreements with experimental data. four dimensionless variables such as, rib pitch-to-rib height ratio, rib height-to-channel height ratio, streamwise rib distance on opposite wall to rib pitch ratio, and the attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related coefficients with a weighting factor. D-optimal method is used to determine the training points as a means of design of experiment. Sensitivity of the objective parameters to each design variable has been analyzed. And, optimal values of the design variables have been obtained in a range of the weighting factor.

Effects of Combustor-Level High Free-Stream Turbulence on Blade-Surface Heat/Mass Transfer in the Three-Dimensional Flow Region near the Endwall of a High-Turning Turbine Rotor Cascade

  • Lee Sang Woo;Kwon Hyun Goo;Park Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1347-1357
    • /
    • 2005
  • Effects of combustor-level high free-stream turbulence on the blade-surface heat/mass transfer have been investigated in the three-dimensional flow region near the endwall within a high-turning turbine rotor cascade passage. Free-stream turbulence intensity and integral length scale in the high turbulence case are 14.7 percents and 80 mm, respectively. The result shows that there is no considerable discrepancy in the blade heat/mass transfer near the endwall between the low and high turbulence cases. As departing from the endwall, however, the deviation between the two cases becomes larger, particularly in the region where flow separation and re-attachment occur. Under the high turbulence, flow disturbances such as boundary-layer separation and re-attachment seem to be suppressed, which makes the blade heat/mass transfer more uniform. Moreover, there are some evidences that endwall vortices tend to be weakened under the high turbulence.

대류와 전도 열전달을 이용한 전자부품의 냉각특성 수치해석 (Numerical Analysis on Cooling Characteristics of Electronic Components Using Convection and Conduction Heat Transfer)

  • 손영석;신지영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.390-395
    • /
    • 2001
  • Cooling characteristics using convection and conduction heat transfer in a parallel channel with extruding heat sources are studied numerically. A two-dimensional model has been developed for numerical prediction of transient, compressible, viscous, laminar flow, and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The considered assembly consists of two channels formed by two covers and one PCB which has three uniform heat source blocks. Five different cooling methods are considered to find efficient cooling method in a given geometry and heat source. The velocity and temperature fields, local temperature distribution along surface of blocks, and the maximum temperature in each block are obtained.

  • PDF

곡면에서의 열전달성능 향상을 위한 충돌제트의 최적설계 (Design Optimization of an Impingement Jet on Concave Surface for Enhancement of Heat Transfer Performance)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.100-103
    • /
    • 2011
  • In the present work, a numerical study of fluid flow and heat transfer on the concave surface with impinging jet has been performed by solving three-dimensional Reynods-averaged Naver-Stokes(RANS) equations. The constant temperature condition was applied to the concave impingement surface. The inclination angle of jet nozzle and the distance between jet nozzles are chosen as design variables under equivalent mass flow rate of working fluid into cooling channel, and area averaged Nusselt number on concave impingement surface is set as the objective function. Thirteen training points are obtained by Latin Hypercube sampling method, and the PEA model is constructed by using the objective function values at the trainging points. And, the sequential quadratic programming is used to search for the optimal paint from the PBA model. Through the optimization, the optimal shape shows improved heat transfer rate as compared to the reference geometry.

  • PDF

라디에이터용 납작관의 최적형상 도출을 위한 열.유동해석 (Flow and Thermal Analyses for the Optimal Specification of Flat Tube at Radiator)

  • 박경우;박희용
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1046-1055
    • /
    • 2000
  • The flow and thermal phenomena in flat tubes of radiator are analyzed numerically. To predict the characteristics of heat transfer and pressure drop, the flow analysis program for three-dimensional complex geometry is developed, which adopted an non-staggered grid system and Cartesian velocities as dependent variables of the momentum equations. Using the developed program, the effect of tube specifications on the heat transfer characteristics is investigated for various flat tubes. From this study, the following results are obtained; (1) For the same hydraulic diameter($D_h{\doteq}5.2$mm), the Nusselt numbers of three basic modeis(D, J, and H-model) are 8.71, 8.92, and 10.58, respectively, and the pressure drops of D-, J-, and H-model are predicted as $-3.08{\times}10^{-2}\;Pa,\;-3.12{\times}10^{-2}\;Pa,\;and\; -3.98{\times}10^{-2}$ Pa, (2) In case of the same flat tube specification, the fins must be brazed at upper tube surface because the heat is more vividly transferred. Therefore, it is found that the H- model is the most effective tube as a heat exchanger and these results are used as a fundamental data for the design of tube.

개량 루버핀에 의한 열전달 성능향상에 관한 연구 (Numerical Analysis on the Heat Transfer Enhancement by Modified Lovour Fin)

  • 정재동;박병규;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.408-413
    • /
    • 2001
  • Numerical analysis on the three-dimensional laminar flows (Re=1000) and heat transfer in a rectangular channel with punched longitudinal vortex generator have been conducted to explore the heat transfer enhancement and the combined effect of the angle of attack ${\alpha}$ and the lovour angle ${\beta}$. Rectangular winglets have been used as vortex generators. Velocity and temperature fields and spanwise averaged Nu and friction factor were presented. Enhancement of heat transfer and flow loss penalty are evidenced. The results show performance characteristics allowing a reduction in heat transfer surface area of 62% for fixed heat duty and for fixed pumping power compared with that of channel flow without vortex generator. However, adding lovour angle to the vortex generator shows no positive effect on the heat transfer enhancement.

  • PDF

건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법 (Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building)

  • 이주희;장진우;이현균;이용준;이규성
    • KIEAE Journal
    • /
    • 제16권1호
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.