• 제목/요약/키워드: Three-dimensional heat transfer

검색결과 385건 처리시간 0.035초

Comparisons of 2-D and 3-D IVR experiments for oxide layer in the three-layer configuration

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2499-2510
    • /
    • 2020
  • We performed 3-D (3-dimensional) IVR (In-Vessel Retention) natural convection experiments simulating the oxide layer in the three-layer configuration, varying the aspect ratio (H/R). Mass transfer experiment was conducted based on the analogy to achieve high RaH's of 1.99 × 1012-6.90 × 1013 with compact facilities. Comparisons with 2-D (2-dimensional) experiments revealed different local heat transfer characteristics on upper and lower boundaries of the oxide layer depending on the H/R. For the 3-D shallow oxide layer, the multi-cell flow patterns appeared and the number of cells was considerably increased with the H/R decreases, which differs with the 2-D experiments that the number of cells was independent on H/R. Thus, the enhancement of the downward heat transfer and the mitigation of the focusing effect were more noticeable in the 3-D experiments.

Two- and three-dimensional experiments for oxide pool in in-vessel retention of core melts

  • Kim, Su-Hyeon;Park, Hae-Kyun;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • 제49권7호
    • /
    • pp.1405-1413
    • /
    • 2017
  • To investigate the heat loads imposed on a reactor vessel through the natural convection of core melts in severe accidents, mass transfer experiments were performed based on the heat transfer/mass transfer analogy, using two- (2-D) and three-dimensional (3-D) facilities of various heights. The modified Rayleigh numbers ranged from $10^{12}$ to $10^{15}$, with a fixed Prandtl number of 2,014. The measured Nusselt numbers showed a trend similar to those of existing studies, but the absolute values showed discrepancies owing to the high Prandtl number of this system. The measured angle-dependent Nusselt numbers were analyzed for 2-D and 3-D geometries, and a multiplier was developed that enables the extrapolation of 2-D data into 3-D data. The definition of $Ra^{\prime}_H$ was specified for 2-D geometries, so that results could be extrapolated for 3-D geometries; also, heat transfer correlations were developed.

3차원 실내공간의 가열장애물에 대한 열전달 및 난류유동의 수치해석 (A Numerical Analysis of Turbulent Flow Field and Heat Transfer in a Three Dimensional Room with a Heat Generating Obstacle)

  • 정효민
    • 수산해양기술연구
    • /
    • 제31권1호
    • /
    • pp.107-119
    • /
    • 1995
  • 3차원 실내공간의 상부에서 일정유속이 유입하여 양측면 하부쪽으로 유출될 경우, 책상형의 가열 장애물 영향에 의한 유동장의 변화와 온도분포를 수치계산 한 결과 다음과 같은 결론을 얻었다. (1)표준 k-$\varepsilon$ 2 방정식 모델로 난류유동장을 해석한 결과 장애물을 기준으로 상하부에는 독립적인 큰 재순환 영역이 존재함을 알 수 있었다. (2) 유입류의 속도 변화에 따른 전제적인 유동패턴은 큰 변화없이 상사적인 분포를 하는 것을 알 수 있었다. (3) 유입속도가 감소함에 따라서, 공간에 대한 발열체의 온도영향이 커진다. (4) Re수가 작은 범위 (10 상(4)-10 상(5)에서는 열전달이 급격히 상승하여, Re수가 10 상(5)이상이 도면 열전달이 거의 일정하다.

  • PDF

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • 손영석;신지영
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF

3차원 열전달을 고려한 틸팅패드 스러스트 베어링의 해석 (Three-Dimensional Beat Transfer Analysis on Tilting-Pad Thrust Bearings)

  • 김호종;최성필;하현천
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.173-181
    • /
    • 2006
  • In the present study, we developed a numerical analysis software to predict performance of tilting-pad thrust bearings. The finite element method was adopted to compute lubricant film pressure and temperature. Three-dimensional heat transfer equations were solved simultaneously for the lubricant film, pad, and runner. Groove temperature was assumed with two different models. From application of the software to a thrust bearing, it has been seen that the three-dimensional analysis predicts higher temperature than the average temperature analysis. It has also been found that the groove model with a hot-oil-carry-over factor predicts higher temperature.

열전달과 물질전달의 유사성에 관한 연구 (A study on the Analogy between Heat Transfer and Mass Transfer)

  • 유성연;노종광;정문기
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

강-열점소성 유한요소법을 이용한 알루미늄 링압연 공정 해석 (Analysis of Aluminium Ring Rolling Process Using Thermo-Rigid-Plastic Finite Element Method)

  • 구상완;이종찬;윤수진;김낙수
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.815-822
    • /
    • 2003
  • The ring rolling process involves not only three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece but also heat transfer among workpiece, rolls and environment. In this study, deformation and heat transfer analyses were conducted by using the three-dimensional thermo-rigid-plastic finite element method. Three cases of plain ring rolling process were, respectively, simulated for the predictions of roll forces and the highest temperature zone during the aluminum process that ductile fracture often occurs. In addition, to prevent fishtail phenomena of the ring workpiece, axial rolls were used for this study.

A Study on Development of the Three-Dimensional Numerical Model to Analyze the Casting Process: Mold Filling and Solidification

  • Mok Jinho
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1488-1502
    • /
    • 2005
  • A three dimensional model was developed to analyze the mold filling and solidification in the casting processes. The model uses the VOF method for the calculation of the free surface and the modified Equivalent Specific Heat method for the treatment of the latent heat evolution. The solution procedure is based on the SIMPLER algorithm. The complete model has been validated using the exact solutions for phase change heat transfer and the experimental results of broken water column. The three-dimensional model has been applied to the benchmark test and the results were compared to those from experiment, a two-dimensional analysis, and another three dimensional numerical model.

내부 요소 연결 매개법을 활용한 3 차원 냉각핀의 위상 최적설계 (The Topology Optimization of Three-dimensional Cooling Fins by the Internal Element Connectivity Parameterization Method)

  • 유성민;김윤영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.360-365
    • /
    • 2007
  • This work is concerned with the topology optimization of three-dimensional cooling fins or heat sinks. Motivated by earlier success of the Internal Element Connectivity Method (I-ECP) method in two-dimensional problems, the extension of I-ECP to three-dimensional problems is carried out. The main efforts were made to maintain the numerical trouble-free characteristics of I-ECP for full three-dimensional problems; a serious numerical problem appearing in thermal topology optimization is erroneous temperature undershooting. The effectiveness of the present implementation was checked through the design optimization of three-dimensional fins.

  • PDF

최적화 기법을 활용한 열전달계수의 측정 (A study on the Evaluation of Heat Transfer Coefficient by Optimization Algorithm)

  • 김정태;임채호;최정길
    • 소성∙가공
    • /
    • 제15권9호
    • /
    • pp.679-685
    • /
    • 2006
  • New method for evaluation of heat transfer coefficient is proposed. In general, many researchers have been studied about inverse problem in order to calculate the heat transfer coefficient on three-dimensional heat conduction problem. But they can get the time-dependent heat transfer coefficient only through inverse problem. In order to acquire temperature-dependent heat transfer coefficient, it requires much time for numerous repetitive calculation and inconvenient manual modification. In order to solve these problems, we are using the SQP(Sequential Quadratic Programming) as an optimization algorithm. When the temperature history is given by experiment, the optimization algorithm can evaluate the temperature-dependent heat transfer coefficient with automatic repetitive calculation until difference between calculated temperature history and experimental ones is minimized. Finally, temperature-dependent heat transfer coefficient evaluated by developed program can used on various heat transfer problem.