• 제목/요약/키워드: Three-dimensional finite element model

검색결과 1,015건 처리시간 0.025초

Testing and finite element modeling of stressed skin diaphragms

  • Liu, Yang;Zhang, Qilin;Qian, Weijun
    • Steel and Composite Structures
    • /
    • 제7권1호
    • /
    • pp.35-52
    • /
    • 2007
  • The cold formed light-gauge profiled steel sheeting can offer considerable shear resistance acting in the steel building frame. This paper conducted the full-scale test on the shear behavior of stressed skin diaphragm using profiled sheeting connected by the self-tapping screws. A three-dimensional finite element model that simulates the stressed skin diaphragm was developed. The sheet was modeled using thin element model while the supporting members were simulated using beam elements. Fasteners were represented in the numerical model as equivalent springs. A joint test program was conducted to characterize the properties of these springs and results were reported in this study. Finite element model of the full-scale test was analyzed by use of the ANSYS package, considering nonlinearity caused by the large deflection and slip of fasteners. The experimental data was compared with the results acquired by the EUR formulas and finite element analysis.

Kimplant에 관한 3차원 유한요소 분석적 연구 (Three Dimensional Finite Element Analysis of Kimplant)

  • 김우영;장경수;김창회;김영수
    • 구강회복응용과학지
    • /
    • 제20권1호
    • /
    • pp.9-17
    • /
    • 2004
  • In this study, the biomechanical characteristics of Kimplant were compared with that of Branemark implant by using three dimensional finite element analysis. Two finite element models were fabricated by inserting each implant into the bone model. The bone model was designed to have 18mm height, 13mm width and 15mm length. The size of each implant was planned to have 4mm width and 10mm length. A 200N force was applied on the center of abutment top in three directions - vertical, horizontal and oblique. After analyzing the stresses of fixture and surrounding bone, following results were obtained. 1. There was similar stress distribution between the two models. 2. The magnitude of maximum principal stress on the implant was similar between the two models but the location of maximum principal stress on the implant was different. 3. The magnitude and location of maximum principal stress on the surrounding bone was similar between the two models.

유한요소 해석법을 이용한 반월상 연골 절제술의 생체역학적 평가 (Biomechanical evaluation of menisectomy using finite element method)

  • 배지용;박진홍;송은규;박상진;전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1471-1472
    • /
    • 2008
  • To analyze biomechanical effects of various types of menisectomy in the knee joint, the contact area and pressure distribution of intact the knee joint and the operated by various menisectomies were studied by using finite element method their results are compared with each other. In this study, the femur, the tibia, the articular cartilage and the menisci were three dimensionally reconstructed using MR Images of healthy knee joint in full extension of 26 years old male. Also, three dimensional finite element model of the knee joint was constructed including the models of ligaments and tendons on the reconstructed three dimensional model. Bones were considered to be rigid, articular cartilage and menisci were considered as homogeneous, isotropic and linearly elastic materials and ligaments and tendons were modeled as hyperelastic materials. Based on the results, the effects of various types of menisectomy on the knee joints are clearly elucidated.

  • PDF

비축대칭 압출 공정의 근사 3차원 유한 요소 해석 (A Simplified Three-Dimensional Finite Element Analysis of the Non-axisymmetric Extrusion Process)

  • 신현우;김동원;김낙수
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.52-65
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition is combined with the slab method. To define the die geometry for a non-axisymmetric extrusion. area mapping technique was used. Streamlined die surface was used to minimize the total extrusion pressure. Extrusion of square, hexagonal and 'T' section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

An approach of evaluation and mechanism study on the high and steep rock slope in water conservancy project

  • Yang, Meng;Su, Huaizhi;Wen, Zhiping
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.527-535
    • /
    • 2017
  • In this study, an aging deformation statistical model for a unique high and steep rock slope was proposed, and the aging characteristic of the slope deformation was better reflected. The slope displacement was affected by multiple-environmental factors in multiple scales and displayed the same tendency with a rising water level. The statistical model of the high and steep rock including non-aging factors was set up based on previous analyses and the study of the deformation and residual tendency. The rule and importance of the water level factor as a non-aging unit was analyzed. A partitioned statistical model and mutation model were established for the comprehensive cumulative displacement velocity with the monitoring study under multiple factors and multiple parameters. A spatial model was also developed to reflect and predict the whole and sectional deformation character by combining aging, deformation and space coordinates. A neural network model was built to fit and predict the deformation with a high degree of precision by mastering its feature of complexity and randomness. A three-dimensional finite element model of the slope was applied to approach the structure character using numerical simulations. Further, a three-dimensional finite element model of the slope and dam was developed, and the whole deformation state was analyzed. This study is expected to provide a powerful and systematic method to analyze very high, important and dangerous slopes.

유한요소 모델링을 이용한 아크 스폿 용접의 너깃 형상 예측 (Prediction of Nuggest Shape by Finite Element Modeling in Arc-spot Welding)

  • 황종근;장경복;김기순;강성수
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.84-90
    • /
    • 1999
  • The shape of weld nuggest in arc spot welding of 304 stainless steel was found by searching thermal history of a weld joint through a three-dimensional finite element model. The problem consists of one in which the finite element mesh is growing continuously in time in order to accomodate metal transfer in arc spot welding using element rebirth technique. The analysis was performed on the basis of experimental results. The finite element program MARC, along with a few user subroutines, was employed to obtain the numerical results. Temperature-dependent thermal properties, stir effect in weld pool, effect of phase transformation, and the convective and radiative boundary conditions are included in the model. Numerically predicted shape of weld nuggest is compared with the experimentally observed shape.

  • PDF

Stress Analysis of Femoral Stems on Non-Cemented Total Hip Replacement - A Three-Dimensional Finite Element Analysis -

  • Kim, Sung-Kon;Chae, Soo-Won;Jeong, Jung-Hwan
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.263-266
    • /
    • 1997
  • Three dimensional numerical model based on the finite element method(FEM) were developed to predict the mechanical behavior of hip implants. The purpose of this study is to investigate the stress distribution of two types of cementless total hip replacement femoral component -a straight stem and a curved stem, and to compare their effect on the stress shielding between two types by three dimensional finite element method. The authors analyzed von Mises stress in the cortex & stem and compared the stress between the straight and the curved stem. In comparison of stresses between two different design of femoral stem, there was 25% more decrease of stress in straight stem than curved stem in the medial cortex at proximal region. The straight stem had consistently much lower stresses than the curved stem throughout the whole medial cortex with maximum 70% reduction of stress. However, there was little change in stress between nature and 2 implanted femur throughout the lateral cortex. Stress of femoral stem was much higher in the straight stem than the curved stem up to 60%. The straight stem had more chance of stress shielding and a risk of fatigue fracture of the stem compared with the curved stem in noncement hip arthroplasty. In design of femoral stem still we have to consider to develop design to distribute more even stress on the proximal medial cortex.

  • PDF

고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석 (A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser)

  • 안동규;김민수
    • 한국기계가공학회지
    • /
    • 제5권1호
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

곡관의 손상압력에 미치는 내부 감육결함의 영향 평가 (An Evaluation of the Effect of Internal Thinning Defect on the Failure Pressure of Elbow)

  • 김진원;김태순;박치용
    • 한국안전학회지
    • /
    • 제18권4호
    • /
    • pp.28-34
    • /
    • 2003
  • In the present study, three-dimensional finite element analysis was performed to investigate the effects of internal wall thinning defect on the failure pressure of elbow in the piping system and to develop the failure pressure evaluation model. From the results of finite element analysis, the failure pressure was derived by employing local stress criteria, and the effects of thinning location, bend radius, and defect geometry on the failure pressure of internally wall thinned elbow were investigated. Also, based on these investigations and previous model developed to estimate the failure pressure of elbow with an external pitting defect, the failure pressure evaluation model to be applicable to the elbow containing an internal thinning defect was proposed and compared with the results of finite element analysis. The failure pressure calculated by the model agreed well with the results of finite element analysis.

유한요소 분석을 이용한 하중 위치에 따른 구치부 임플란트 국소의치 지지골의 응력 분포 연구 (Finite element analysis of stress distribution on supporting bone of posterior implant partial dentures by loading location)

  • 손성식;김영직;이명곤
    • 대한치과기공학회지
    • /
    • 제29권1호
    • /
    • pp.93-101
    • /
    • 2007
  • The purpose of this study is to evaluate the effect of three different oblique mechanical loading to occlusal surfaces of posterior implant partial dentures on the stress distributions in surrounding bone, using 3-dimensional finite element method. A 3-dimensional finite element model of a posterior implant partial dentures composed of three unit implants, simplified 3 gold alloy crown and supporting bone was developed according to the design of AVANA self tapping implant for this study. Three kinds of surface distributed oblique loads(300 N) are applied to following occlusal surfaces in the three crowns; 1) All occlusal surfaces in the three crown(load of 300 N was shared to three crown), 2) Occlusal surface of centered crown (load of 300 N was applied to a centered crown), 3) Occlusal surface of proximal crown(load of 300 N was applied to a distal proximal crown). In the results, 141 MPa of maximum von Mises stress was calculated at third loading condition and 98 MPa of minimum von Mises stress was calculated at first loading condition. From the results, location and type of occlusive loading conditions are important for the safety of supporting bone.

  • PDF