• Title/Summary/Keyword: Three-dimensional finite element method

Search Result 1,214, Processing Time 0.032 seconds

Quasi-Static Equilibrium of a Propeller Shaft in a Hydrodynamic Oil-Lubricated Stern Tube Bearing (윤활유(潤滑油) 선미관(船尾管) 베어링 축계(軸系)의 준정적(準靜的) 평형상태(平衡狀態)에 관한 연구(硏究))

  • S.Y.,Ahn;S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.3
    • /
    • pp.51-61
    • /
    • 1989
  • Recently, the growth in the propulsion power and propeller size of typical energy saving ships has resulted in severe damages of the oil-lubricated stern tube bearing. Consequently, a more rational analytical method for the design of the shafting system is required. In this paper an analytical method applicable to the design of the oil-lubricated stern tube bearing and shafting system is presented. The method consists of the finite element analysis of the shafting system and the oil film hydrodynamics. The shafting system is modeled as a three-dimensional problem using beam elements taking account for the steady components of thrust, lateral forces and moments of the propeller as well as the elastic foundation effects. The oil film hydrodynamics is modeled as a two-dimensional problem. Equal and retangular elements employing hourglass control method are used for the construction of the oil film fluidity matrix. To search the quasi-static equilibrium position between the propeller shaft and the oil film, an optimization technique is employed. Some numerical results based on the proposed method are compared with some measured and numerical data available. They show acceptable agreements with the data.

  • PDF

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.

A Numerical Study on the Response of the Tibial Component in Total Knee Arthroplasty to Longitudinal Impact (인공무릎관절 전치환술에 있어 축방향 충격에 의한 Tibial Component의 응답 특성 분석 연구)

  • 조용균;조철형;최재봉;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.503-511
    • /
    • 1998
  • In this study, the stress distribution for different tibial components was observed In order to Investigate the load transfer and potential failure mechanism of the tibial components subjected to dynamic impact loading and also to evacuate the effect of bone-implant bonding conditions on the implant system. The 3-dimensional finite element models included an intact tibia, cemented metal-backed tibial component, uncemented metal-blocked tibial component, cemented all-polyethylene tibial component, and metal-backed component with a debonded bone/stem interface. The results showed that the cemented metal-hocked component Induced slightly higher peak stress at stem tip than the uncemented component. The peak stress of the all-polyethylene tibia1 component at stem trip showed about half thats of metal-backed tibial components. The all-polyethylene component showed a similar dynamic response to intact tibia. In case of debonded bone/stem interface, the peak stress below the metal tray was three times Higher than that of the fully bonded interface and unstable stress distribution at the stem tip was observed with time, which causes another adverse bone apposition and implant loosening. Thus, the all-polyethylene tibial component bonded fully to the surrounding bone might be most desirable system under an impact loading.

  • PDF

Evaluation of Buckling Load and Specified Compression Strength of Welded Built-up H-section Compression Members with Residual Stresses (잔류응력의 영향을 고려한 조립 H-형강 부재의 좌굴하중 및 설계압축강도 평가)

  • Lee, Soo-Keuon;Yang, Jae-Guen;Kang, Ji-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.81-88
    • /
    • 2017
  • Residual stress is defined as stress that already exists on a structural member from the effects of welding and plastic deformation before the application of loading. Due to such residual stress, welded H-section compression members under centroidal compression load can undergo buckling and failure for strength values smaller than the predicted buckling load and specified compressive strength. Therefore, this study was carried out to evaluate the effect of residual stress from welding on the determination of the buckling load and specified compressive strength of the H-section compression member according to the column length variation. A three-dimensional nonlinear finite element analysis was performed for the H-section compression member where the welded joint was fillet welded by applying heat inputs of 3.1kJ/mm and 3.6kJ/mm using the SAW welding method.

FINITE ELEMENT ANALYSIS OF CYLINDER TYPE IMPLANT PLACED INTO REGENERATED BONE WITH TYPE IV BONE QUALITY (IV형의 골질로 재생된 골내에 식립된 원통형 임플란트의 유한요소법적 연구)

  • Kim, Byung-Ock;Hong, Kug-Sun;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • Stress transfer to the surrounding tissues is one of the factors involved in the design of dental implants. Unfortunately, insufficient data are available for stress transfer within the regenerated bone surrounding dental implants. The purpose of this study was to investigate the concentration of stresses within the regenerated bone surrounding the implant using three-dimensional finite element stress analysis method. Stress magnitude and contours within the regenerated bone were calculated. The $3.75{\times}10-mm$ implant (3i, USA) was used for this study and was assumed to be 100% osseointegrated, and was placed in mandibular bone and restored with a cast gold crown. Using ANSYS software revision 6.0, a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The present study used a fine grid model incorporating elements between 165,148 and 253,604 and nodal points between 31,616 and 48,877. This study was simulated loads of 200N at the central fossa (A), at the outside point of the central fossa with resin filling into screw hole (B), and at the buccal cusp (C), in a vertical and $30^{\circ}$ lateral loading, respectively. The results were as follows; 1. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were increased from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, concentrated on the top of the cylindrical collar loading point B and C in vertical loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were increase from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in vertical loading. 2. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were decreased from loading point A to C in lateral loading. Stresses according to the depth of regenerated bone were concentrated on the top of the cylindrical collar in loading point A and B, distributed along the implant evenly in loading point C in lateral loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were decreased from loading point A to C in lateral loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in lateral loading. In summary, these data indicate that both bone quality surrounding the regenerated bone adjacent to implant fixture and load direction applied on the prosthesis could influence concentration of stress within the regenerated bone surrounding the cylindrical type implant fixture.

Failure Characteristics of Scarf Patch-repaired Composite Single-lap Joints (스카프 패치로 수리한 복합재 단일겹침 체결부의 파손 특성 연구)

  • Kim, Choong-Hyun;Yoo, Jae-Seung;Byeon, Chang-Seok;Ju, Hyun-Woo;Park, Min-Young;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • The failure strength of composite single-lap joint repaired using scarf patch was investigated by test and finite element method. A total of 45 specimens were tested changing scarf ratio, stacking pattern, and defect size to study the failure strength and mode. Except for one case, all repaired specimens showed the equal or higher strength than the sound specimens and the effect of considered repair parameters was not remarkable. It was found through the failure mode inspection that the surface treatment for bonding was not enough in the case which failed at the lower load than the sound specimen. Three-dimensional finite element analysis was conducted to verify the test results. It was confirmed that the considered repair parameters do not significantly affect the stress distribution of the specimens. It was also observed that the applied tensile load is relieved passing through the overlapped region thickness of which is almost double. From this study, it is concluded that if the bonding procedure for adherends and patch including surface treatment for fabric layer is thoroughly followed, the strength of repaired single-lap joint can be restored up to the strength of sound one.

FINITE ELEMENT ANALYSIS OF WIDE DIAMETER SCREW IMPLANT PLACED INTO REGENERATED BONE (재생된 골에 식립한 넓은 직경의 나사형 임플란트에 대한 유한요소법적 분석)

  • Kim, Su-Gwan;Kim, Jae-Duk;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.248-254
    • /
    • 2005
  • The purpose of this study was to investigate the distribution of stress within the regenerated bone surrounding the implant using three dimensional finite element stress analysis method. Using ANSYS software revision 6.0 (IronCAD LLC, USA), a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The $5.0{\times}11.5-mm$ screw implant (3i, USA) was used for this study, and was assumed to be 100% osseointegrated. And it was restored with gold crown with resin filling at the central fossa area. The implant was surrounded by the regenerated type IV bone, with 4 mm in width and 7 mm apical to the platform of implant in length. And the regenerated bone was surrounded by type I, type II, and type III bone, respectively. The present study used a fine grid model incorporating elements between 250,820 and 352,494 and nodal points between 47,978 and 67,471. A load of 200N was applied at the 3 points on occlusal surfaces of the restoration, the central fossa, outside point of the central fossa with resin filling into screw hole, and the functional cusp, at a 0 degree angle to the vertical axis of the implant, respectively. The results were as follows: 1. The stress distribution in the regenerated bone-implant interface was highly dependent on both the density of the native bone surrounding the regenerated bone and the loading point. 2. A load of 200N at the buccal cusp produced 5-fold increase in the stress concentration at the neck of the implant and apex of regenerated bone irrespective of surrounding bone density compared to a load of 200N at the central fossa. 3. It was found that stress was more homogeneously distributed along the side of implant when the implant was surrounded by both regenerated bone and native type III bone. In summary, these data indicate that concentration of stress on the implant-regenerated bone interface depends on both the native bone quality surrounding the regenerated bone adjacent to implant and the load direction applied on the prosthesis.

Thermal Insulation Effect of Inflatable Life Vest on the Drowned Individual estimated by Numerical Analysis (익수자 체온 저하에 미치는 팽창식 구명동의의 단열효과 수치 분석)

  • Kim, Sung Chan;Lee, Kyung Hoon;Hwang, Se Yun;Lee, Jin Sung;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.285-291
    • /
    • 2015
  • Exposure to cold sea water can be life-threatening to the drowned individual. Although appropriate life jacket can be usually be provided for the buoyance at the drowning accident, heat loss can make the drowned individual experience the hypothermia. Inflatable life jackets filled with inflatable air pocket can increase the thermal protection as well as the buoyancy force. Because it is important to know how the human body behaves unde the different life jacket, present study compares the thermal insulation capacity of solid type life jacket with that of inflatable life jacket. In order to represent the insulation capacity of life jacket, thermal resistance is estimated based on the assumption of steady-state. Also, a transient three-dimensional thermal distribution of the thigh is analyzed by using finite element method implementing the Pennes bioheat equation. The finite element model is a segmental, multi-layered representation of the body section which considers the heat conduction within tissue, bone, fat and local blood flow rate.

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

Dynamic Characteristics of Seohae Cable-stayed Bridge Based on Long-term Measurements (장기계측에 의한 서해대교 사장교의 동특성 평가)

  • Park, Jong-Chil;Park, Chan-Min;Kim, Byeong-Hwa;Lee, Il-Keun;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.115-123
    • /
    • 2006
  • This paper presents long-term dynamic characteristics of a cable-stayed bridge where installed SHM (Structural Health Monitoring) system. Modal parameters such as natural frequencies and mode shapes are identified by modal analysis using three dimensional finite element model. The developed baseline model has a good correlation with measured natural frequencies identified from field ambient vibrations. By statistical data processing between measured natural frequencies and temperatures, it is demonstrated that the natural frequency is in linearly inverse proportion to the temperature. The estimation of temperature effects against frequency variations is performed. Mode shapes are identified from the TDD (Time Domain Decomposition) technique for ambient vibration measurements. Finally, these results demonstrate that the TDD method can apply to identify modal parameters of a cable-stayed bridge.