• 제목/요약/키워드: Three-dimensional finite element

검색결과 2,162건 처리시간 0.035초

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part II: modeling

  • Wu, Han-Liang;Wang, Yuan-Feng;Ma, Yi-Shuo
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.325-340
    • /
    • 2011
  • Based on the experimental data presented in part I of these companion papers, a semi-empirical model is proposed for axial stress-strain curves of reinforced high-strength concrete square columns confined by aramid fiber reinforced polymer (FRP) jackets. Additionally, a three-dimensional finite element model is developed to simulate the mechanical behaviors of the columns. In the finite element model, both material nonlinear and contact nonlinear are taken into account. Moreover, the influence of contact nonlinear (i.e., the end friction on the contact surface between test machines and specimens) is investigated deeply. Predictions from both the semi-empirical model and the finite element model agree with the experimental results, and it is also demonstrated that the friction coefficient of end friction notably affect the properties of columns when it ranges from 0.00 to 0.25.

열간압연시 미세조직 예측을 위한 유한요소 모델 (A Finite Element Model for Predicting the Microstructural Evolution in Hot Rolling)

  • 조현중;김낙수
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.90-100
    • /
    • 1997
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical equations suggested by different research groups were used together to form an integrated system of process and micro- structure simulation of hot rolling. The distribution and time histroy of the momechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained from the finite element analysis of multipass hot rolling processes. The distribution of metallurgical variables were calculated on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in the literature. Consequently, this approach makes it possible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

유한요소 교호법으로 구한 삼차원 균열 탄성해의 정확성 향상 및 검토 (Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method)

  • 박재학
    • 대한기계학회논문집A
    • /
    • 제34권5호
    • /
    • pp.629-635
    • /
    • 2010
  • SGBEM-FEM 교호법이 Nikishkov, Park 및 Atluri 에 의하여 제안되었었다. 제안된 방법을 사용하면 임의 형태의 평면 혹은 비평면 삼차원 균열에 대하여 복합 모드의 응력강도계수를 구할 수 있다. 그러나 현장에서의 적용을 위해서는 이 방법의 정확성 및 신뢰성에 대한 검토가 더욱 필요하다. 따라서 본 논문에서는 응력강도계수에 영향을 주는 주요한 몇 가지 인자를 검토하였다. 그리고 원통의 내부 및 외부에 존재하는 원주방향 표면균열에 대한 응력강도계수를 구하여 기존의 해와 비교하였다. 그 결과 SGBEM-FEM 교호법은 이들 균열에 대하여 정확한 해를 주고 있음을 확인하였다.

강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용 (Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures)

  • 서승일;임성준
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.76-84
    • /
    • 1997
  • 초기설계 단계에서는 선체구조 강도의 신속한 해석을 위해 보요소를 사용한 유한요소 해석이 일반적으로 사용된다. 선체구조를 보요소로 모델링할 때, 브라켓은 해석의 간편화를 위해 강체 요소로 표시된다. 강체 단부의 길이(=span point)는 세 가지 관점 - 굽힘, 전단, 축 변형 - 에 따라서 결정된다. 본 논문에서는, 새로운 2차원 보요소를 개발하였고, 2차원 해석으로 3차원 해석을 대신할 수 있는 방법을 제안하였다. '강체 단부 보요소' 라고 명명된 이 보요소는 한 요소 내에서 세 종류의 span point 효과를 모두 고려할 수 있는데, 이것은 보통의 보요소에서는 불가능한 것이다. 강체 단부 보요소를 사용한 Portal frame 해석결과는 membrane 해석결과와 잘 일치한다. 그리고, 영향계수를 사용한 2단계 해석을 포함하는 준 3차원 해석결과는 좋은 정확도를 보이고 있다. 강체 단부 보요소와 준 3차원 해석방법을 사용한 구조해석은 브라켓에 해당하는 요소가 필요치 않고, 3차원 해석을 단순화시킬 수 있었기 때문에 좋은 계산효율을 가진 것으로 판명되었다.

  • PDF

액슬하우징의 온간 후판단조에서 굽힘 변형된 모서리에서 발생하는 두께 감소 방지를 위하여 고안된 금형 시스템 (Die System for Avoiding Thickness Reduction along the Bent Corner in Warm Plate Forging of an Axle Housing)

  • 김장섭;김기수;심상현;엄재근;전만수
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.447-451
    • /
    • 2010
  • In this paper, a useful die system for warm plate forging of a large axle housing of heavy-duty trucks is presented. A die system composed of material flow guide pin as well as upper die and lower die is proposed to reduce the inherent thickness reduction along the bent corner of the product which deteriorates structural strength and fatigue life in its service. The role of the pin assembled in the upper die is to prevent formation of sharp corner in early forming stage and to supply material in the lower die cavity sufficient enough to thicken the bent corner at the final stroke. The mechanism of the die system is given and its effect on corner thickness of the product is revealed by two-dimensional finite element analysis under plain strain assumption. Three-dimensional finite element solutions are also given to verify validity of the two dimensional approach and to show the mechanics of the die system in detail. The die system has been successfully applied to manufacturing the axle housing of heavy-duty trucks.

Development of a three dimensional circulation model based on fractional step method

  • Abualtayef, Mazen;Kuroiwa, Masamitsu;Sief, Ahmed Khaled;Matsubara, Yuhei;Aly, Ahmed M.;Sayed, Ahmed A.;Sambe, Alioune Nar
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.14-23
    • /
    • 2010
  • A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.

A STUDY ON THE MECHANICAL CHARACTERISTICS OF RESISTANCE MULTI-SPOT WELDED JOINTS WITH PITCH LENGTH

  • Bang, Han-Sur;Bang, Hee-Seon;Joo, Sung-Min;Chang, Woong-Seong;Lee, Chang-Woo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.809-815
    • /
    • 2002
  • For clarifying the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not axi-symmetric, unlike the case of single-spot welded joint, the solution domain for simulation should be three-dimensional. Therefore, in this paper, from the results analyzed using the developed the three dimensional unstationary heat conduction and thermal elasto-plastic programs by an iso-parametric finite element method, mechanical characteristics and their production mechanism on single- and multispot welded joints were clarified. Moreover, effects of pitch length on temperature, welding residual stresses and plastic strain of multi-spot welded joints were evaluated, indicating that a pitch of 30mm was advantageous compared to a pitch of 15mm.

  • PDF

원자로 격납건물의 3차원 구조해석시스템 (Three-Dimensional Structural Analysis System for Nuclear Containment Building)

  • 김선훈
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.235-243
    • /
    • 2010
  • 본 논문에서는 원자로 격납건물의 3차원 해석을 수행할 수 있는 구조해석 시스템을 구축하여 제시하였다. 구조해석 시스템은 고성능 평판 및 쉘 유한요소를 요소 라이브러리로 추가하였고, 비부착식 텐던과 부착식 텐던의 거동을 정확하게 모사할 수 있는 모델링방법을 포함하고 있다. 이러한 기능을 프로그래밍하고 범용 구조해석프로그램 DIANA에 접목시켜 원자로 격납건물의 비선형해석은 물론이고 내압능력 평가가 가능하다. 본 논문에서 제안한 3차원 구조해석 시스템의 신뢰성을 확인하기 위해 중수로형 원자로 격납건물의 구조해석을 수행하여 다른 기관에서 수행한 축대칭 구조해석 결과와 비교분석하였다.

인공신경회로망을 이용한 탄산가스 아크 용접의 잔류응력 예측에 관한 연구 (A Study of Predicting Method of Residual Stress Using Artificial Neural Network in $CO_2$ Arc Welding)

  • 조용준;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.77-88
    • /
    • 1995
  • A prediction method for determining the welding residual stress by artificial neural network is proposed. A three-dimensional transient thermomechanical analysis has been performed for the CO$_{2}$ arc welding using the finite element method. The first part of numerical analysis performs a three-dimensional transient heat transfer analysis, and the second part then uses the results of the first part and performs a three-dimensional transient thermo-elastic-plastic analysis to compute transient and residual stresses in the weld. Data from the finite element method are used to train a backpropagation neural network to predict the residual stress. Architecturally, the fully interconnected network consists of an input layer for the voltage and current, a hidden layer to accommodate the ailure mechanism mapping, and an output layer for the residual stress. The trained network is then applied to the prediction of residual stress in the four specimens. It is concluded that the accuracy of the neural network predicting method is fully comparable with the accuracy achieved by the traditional predicting method.

  • PDF

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권2호
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.