• Title/Summary/Keyword: Three-dimensional finite element

Search Result 2,158, Processing Time 0.028 seconds

A Study on Arbitrary Cross Section Shaped Three-Dimensional Extruion with Upper Bound Method-Finite Element Method Couple (임의 단면 형상의 3차원 압출에 대한 상계해법-유한요소법 Couple에 관한 연구)

  • 이병섭;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.145-155
    • /
    • 1996
  • The extrusion velocity of billet through a die and the shapes of the die are the important factors in the metal forming process of the extrusion of billet. in recent years, the life cycle of products is goingfaster. Although the former finite element method was capable of yielding a detailed analysis, it requires lots of time and extensive coding effort. Then, some simple devices were developed and based on upper bound method. For this purpose , a kinematically admiasible velocity field is formulated for extrusion of cylinders with arbitrary cross section and die profile on their outer surfaces by using a modified upper bound approach, which configures simulataneous extruding speeds in three directions . Also, In order to display mesh of the cold forward extrusion process using the approach , the automatic three-dimentional mesh generation produced by the approach coupled finite element method with upper bound method.

  • PDF

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong
    • Architectural research
    • /
    • v.12 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.

Analysis of Aluminium Ring Rolling Process Using Thermo-Rigid-Plastic Finite Element Method (강-열점소성 유한요소법을 이용한 알루미늄 링압연 공정 해석)

  • Koo, Sang-Wan;Lee, Jong-Chan;Yun, Su-Jin;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.815-822
    • /
    • 2003
  • The ring rolling process involves not only three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece but also heat transfer among workpiece, rolls and environment. In this study, deformation and heat transfer analyses were conducted by using the three-dimensional thermo-rigid-plastic finite element method. Three cases of plain ring rolling process were, respectively, simulated for the predictions of roll forces and the highest temperature zone during the aluminum process that ductile fracture often occurs. In addition, to prevent fishtail phenomena of the ring workpiece, axial rolls were used for this study.

A Study on the Mechanical Characteristics of the Resistance Multi-spot Welded Joints (저항 다점용접부의 역학적 특성에 관한 연구)

  • 방한서;방희선
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.499-505
    • /
    • 2001
  • In order to classify the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not taxi-symmetric, unlike the cafe of single-spot welded joint, the solution domain for simulation should be three dimension. Therefore, in this paper, firstly, the three-dimensional thermal elasto-plastic program is developed by an iso-parametric finite element method. Secondly, from the results analyzed by developed program, this has clarified mechanical characteristics and their production mechanism on single and multi-spot waled joints. Moreover, it has been intended to make clear effects of pitch length on welding residual stresses, plastic strain of multi-spot welded joints.

  • PDF

NUMERICAL SOLUTION FOR WOOD DRYING ON ONE-DIMENSIONAL GRID

  • Lee, Yong-Hun;Kang, Wook;Chung, Woo-Yang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.95-105
    • /
    • 2007
  • A mathematical modeling for the drying process of hygroscopic porous media, such as wood, has been developed in the past decades. The governing equations for wood drying consist of three conservation equations with respect to the three state variables, moisture content, temperature and air density. They are involving simultaneous, highly coupled heat and mass transfer phenomena. In recent, the equations were extended to account for material heterogeneity through the density of the wood and via the density variation of the material process, capillary pressure, absolute permeability, bound water diffusivity and effective thermal conductivity. In this paper, we investigate the drying behavior for the three primary variables of the drying process in terms of control volume finite element method to the heterogeneous transport model on one-dimensional grid.

  • PDF

Analysis of Three Dimensional Mold-Filling Process in Injection Molding (사출성형의 3차원 충전공정 해석)

  • Choi K. I.;Koo B. H.;Cha B. S.;Park H. P.;Rhee B. O.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.269-272
    • /
    • 2005
  • For the three decades, the mold-filling of injection molding process was modeled as Hele-Shaw model. However, this model can not consider the 3D effect. In this paper, numerical simulations of three dimensional mold-filling during the filling phase were performed. The governing equations were discretized by segregated finite element method, which used equal order interpolation for pressure and velocity fields. The iterative linear equation solver (JCG, SOR) was employed for the solution of the momentum and pressure equations. Volume of Fluid (VOF) was employed for the melt front advancement. To check the validity of the numerical results, the results were compared with the experimental ones. The agreements between the experiment and the numerical results were found to be satisfactory.

  • PDF

FEM APPROACH TO ONE DIMENSIONAL UNSTEADY STATE TEMPERATURE DISTRIBUTION IN HUMAN DERMAL PARTS WITH QUADRATIC SHAPE FUNCTIONS

  • Gurung, D. B.;Saxena, V. P.;Adhikary, P. R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.301-313
    • /
    • 2009
  • This paper presents a Finite Element Method (FEM) application to thermal study of natural three layers of human dermal parts of varying properties. This paper carries out investigation of temperature distributions in these layers namely epidermis, dermis and under lying tissue layer. It is assumed that the outer skin is exposed to atmosphere and the loss of heat due to convection, radiation and evaporation of water have also been taken into account. The computations are carried out for one dimensional unsteady state case and the shape functions in dermal parts have been considered to be quadratic. A Finite Element scheme that uses the Crank-Nicolson method is used to solve the problem and the results computed have been exhibited graphically.

  • PDF

Fracture Behavior of Concrete Anchorage Zone of Anchor System subjected to Shear Load (전단하중을 받는 앵커시스템 정착부 콘크리트의 파괴 거동)

  • 손지웅;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.265-270
    • /
    • 2002
  • In this paper, structural behaviors of anchor systems subjected to shear loads are analyzed by using fracture analysis and experiments. Two dimensional finite element analyses of concrete anchor systems to predict breakout failure of concrete through progressive fracture are carried out by utilizing the so-called embedded crack model. Three dimensional finite element analyses are also carried out to investigate the fracture behavior of anchor systems having different effective lengths, edge distances, spacings between anchors, and direction of loads. Results of analyses are compared with both experimental results and design values of ACI code on anchor, and then applicability of finite element method for predicting fracture behavior of concrete anchor systems is verified.

  • PDF

Finite Element Analysis for Design of Closed Die Forging Process of a Bevel Gear (베벨기어의 밀폐단조 공정설계를 위한 유한요소해석)

  • Kim, Yohng-Jo;Park, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2003
  • Bevel gears are important mechanical parts to transmit power in transportation system high precision parts like bevel gears might be manufactured by closed die forging process for dimensional accuracy. Closed die forging of bevel gears offers the high quality and good mechanical properties and also leads to considerable cost saving. To determinate the proper closed-die forging process for bevel gear forms, three-dimensional finite element simulation for the progressive forging process was earned out and also the simulation results were compared with experimental results.

  • PDF

Geometric Modelling of 3-Dimensional Structures for Finite Element Analysis (유한요소해석을 위한 3차원 구조물의 기하학적 모델링)

  • 이재영;이진휴
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.109-120
    • /
    • 1991
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierachical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modelling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modelling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF