• Title/Summary/Keyword: Three-dimensional computed tomography

Search Result 496, Processing Time 0.036 seconds

Comparison of the observer reliability of cranial anatomic landmarks based on cephalometric radiograph and three-dimensional computed tomography scans (삼차원 전산화단층촬영사진과 측모두부 방사선규격사진의 계측자에 따른 계측오차에 대한 비교분석)

  • Kim, Jae-Young;Lee, Dong-Keun;Lee, Sang-Han
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.262-269
    • /
    • 2010
  • Introduction: Accurate diagnosis and treatment planning are very important for orthognathic surgery. A small error in diagnosis can cause postoperative functional and esthetic problems. Pre-existing 2-dimensional (D) chephalogram analysis has a high likelihood of error due to its intrinsic and extrinsic problems. A cephalogram can also be inaccurate due to the limited anatomic points, superimposition of the image, and the considerable time and effort required. Recently, an improvement in technology and popularization of computed tomography (CT) provides patients with 3-D computer based cephalometric analysis, which complements traditional analysis in many ways. However, the results are affected by the experience and the subject of the investigator. Materials and Methods: The effects of the sources human error in 2-D cephalogram analysis and 3-D computerized tomography cephalometric analysis were compared using Simplant CMF program. From 2008 Jan to 2009 June, patients who had undergone CT, cephalo AP, lat were investigated. Results: 1. In the 3 D and 2 D images, 10 out of 93 variables (10.4%) and 11 out 44 variables (25%), respectively, showed a significant difference. 2. Landmarks that showed a significant difference in the 2 D image were the points frequently superimposed anatomically. 3. Go Po Orb landmarks, which showed a significant difference in the 3 D images, were found to be the artificial points for analysis in the 2 D image, and in the current definition, these points cannot be used for reproducibility in the 3 D image. Conclusion: Generally, 3-D CT images provide more precise identification of the traditional cephalometric landmark. Greater variability of certain landmarks in the mediolateral direction is probably related to the inadequate definition of the landmarks in the third dimension.

Analysis of the Development of the Nasal Septum and Measurement of the Harvestable Septal Cartilage in Koreans Using Three-Dimensional Facial Bone Computed Tomography Scanning

  • Kim, Jae Hee;Jung, Dong Ju;Kim, Hyo Seong;Kim, Chang Hyun;Kim, Tae Yeon
    • Archives of Plastic Surgery
    • /
    • v.41 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Background The septal cartilage is the most useful donor site for autologous cartilage graft material in rhinoplasty. For successful nasal surgery, it is necessary to understand the developmental process of the nasal septum and to predict the amount of harvestable septal cartilage before surgery. Methods One hundred twenty-three Korean patients who underwent three-dimensional (3D) facial bone computed tomography (CT) were selected for evaluation of the midsagittal view of the nasal septum. Multiple parameters such as the area of each component of the nasal septum and the amount of harvestable septal cartilage were measured using Digimizer software. Results The area of the total nasal septum showed rapid growth until the teenage years, but thereafter no significant change throughout the lifetime. However, the development of the septal cartilage showed a gradual decline due to ossification changes with aging after puberty in spite of a lack of change in the total septal area. The area of harvestable septal cartilage in young adults was $549.84{\pm}151.26mm^2$ and decreased thereafter with age. Conclusions A 3D facial bone CT scan can provide valuable information on the septal cartilage graft before rhinoplasty. Considering the developmental process of the septal cartilage identified in this study, septal surgery should not be performed until puberty due to the risk of nasal growth impairment. Furthermore, in elderly patients who show a decreased cartilage area due to ossification changes, septal cartilage harvesting should be performed carefully due to the risk of saddle nose deformity.

Cone-beam computed tomography-guided three-dimensional evaluation of treatment effectiveness of the Frog appliance

  • Li, Mujia;Su, Xiaoxia;Li, Yang;Li, Xianglin;Si, Xinqin
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Objective: To evaluate the effectiveness of the Frog appliance in three dimensions by using cone-beam computed tomography (CBCT) images. Methods: Forty patients (21 boys and 19 girls), averaged 11.7 years old, with an Angle Class II division 1 malocclusion were included in our study. They had either late mixed dentition or early permanent dentition, and the maxillary second molars had not yet erupted. All patients underwent CBCT before and after the treatment for measuring changes in the maxillary first molars, second premolars, central incisors, and profile. Paired-samples t-test was used to compare the mean difference in each variable before treatment and after the first phase of treatment. Results: The maxillary first molars were effectively distalized by 4.25 mm (p < 0.001) and 3.53 mm (p < 0.05) in the dental crown and root apex, respectively. The tipping increased by $2.25^{\circ}$, but the difference was not significant. Moreover the teeth moved buccally by 0.84 mm (p < 0.05) and 2.87 mm (p < 0.01) in the mesiobuccal and distobuccal cusps, respectively, whereas no significant changes occurred in the root apex. Regarding the anchorage parts, the angle of the maxillary central incisor's long axis to the sella-nasion plane increased by $2.76^{\circ}$ (p < 0.05) and the distance from the upper lip to the esthetic plane decreased by 0.52 mm (p = 0.01). Conclusions: The Frog appliance effectively distalized the maxillary molars with an acceptable degree of tipping, distobuccal rotation, and buccal crown torque, with only slight anchorage loss. Furthermore, CBCT image demonstrated that it is a simple and reliable method for three-dimensional analysis.

Evaluation of digital dental models obtained from dental cone-beam computed tomography scan of alginate impressions

  • Jiang, Tingting;Lee, Sang-Mi;Hou, Yanan;Chang, Xin;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.129-136
    • /
    • 2016
  • Objective: To investigate the dimensional accuracy of digital dental models obtained from the dental cone-beam computed tomography (CBCT) scan of alginate impressions according to the time elapse when the impressions are stored under ambient conditions. Methods: Alginate impressions were obtained from 20 adults using 3 different alginate materials, 2 traditional alginate materials (Alginoplast and Cavex Impressional) and 1 extended-pour alginate material (Cavex ColorChange). The impressions were stored under ambient conditions, and scanned by CBCT immediately after the impressions were taken, and then at 1 hour intervals for 6 hours. After reconstructing three-dimensional digital dental models, the models were measured and the data were analyzed to determine dimensional changes according to the elapsed time. The changes within the measurement error were regarded as clinically acceptable in this study. Results: All measurements showed a decreasing tendency with an increase in the elapsed time after the impressions. Although the extended-pour alginate exhibited a less decreasing tendency than the other 2 materials, there were no statistically significant differences between the materials. Changes above the measurement error occurred between the time points of 3 and 4 hours after the impressions. Conclusions: The results of this study indicate that digital dental models can be obtained simply from a CBCT scan of alginate impressions without sending them to a remote laboratory. However, when the impressions are not stored under special conditions, they should be scanned immediately, or at least within 2 to 3 hours after the impressions are taken.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.

Accuracy of three-dimensional cephalograms generated using a biplanar imaging system

  • Park, Ha-Yeon;Lee, Jae-Seo;Cho, Jin-Hyoung;Hwang, Hyeon-Shik;Lee, Kyung-Min
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.292-303
    • /
    • 2018
  • Objective: Biplanar imaging systems allow for simultaneous acquisition of lateral and frontal cephalograms. The purpose of this study was to compare measurements recorded on three-dimensional (3D) cephalograms constructed from two-dimensional conventional radiographs and biplanar radiographs generated using a new biplanar imaging system with those recorded on cone-beam computed tomography (CBCT)-generated cephalograms in order to evaluate the accuracy of the 3D cephalograms generated using the biplanar imaging system. Methods: Three sets of lateral and frontal radiographs of 15 human dry skulls with prominent facial asymmetry were obtained using conventional radiography, the biplanar imaging system, and CBCT. To minimize errors in the construction of 3D cephalograms, fiducial markers were attached to anatomical landmarks prior to the acquisition of radiographs. Using the 3D $Ceph^{TM}$ program, 3D cephalograms were constructed from the images obtained using the biplanar imaging system (3D $ceph_{biplanar}$), conventional radiography (3D $ceph_{conv}$), and CBCT (3D $ceph_{cbct}$). A total of 34 measurements were obtained compared among the three image sets using paired t-tests and Bland-Altman plotting. Results: There were no statistically significant differences between the 3D $ceph_{biplanar}$ and 3D $ceph_{cbct}$ measurements. In addition, with the exception of one measurement, there were no significant differences between the 3D $ceph_{cbct}$ and 3D $ceph_{conv}$ measurements. However, the values obtained from 3D $ceph_{conv}$ showed larger deviations than those obtained from 3D $ceph_{biplanar}$. Conclusions: The results of this study suggest that the new biplanar imaging system enables the construction of accurate 3D cephalograms and could be a useful alternative to conventional radiography.

Quantification of three-dimensional facial asymmetry for diagnosis and postoperative evaluation of orthognathic surgery

  • Cao, Hua-Lian;Kang, Moon-Ho;Lee, Jin-Yong;Park, Won-Jong;Choung, Han-Wool;Choung, Pill-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.17.1-17.11
    • /
    • 2020
  • Background: To evaluate the facial asymmetry, three-dimensional computed tomography (3D-CT) has been used widely. This study proposed a method to quantify facial asymmetry based on 3D-CT. Methods: The normal standard group consisted of twenty-five male subjects who had a balanced face and normal occlusion. Five anatomical landmarks were selected as reference points and ten anatomical landmarks were selected as measurement points to evaluate facial asymmetry. The formula of facial asymmetry index was designed by using the distances between the landmarks. The index value on a specific landmark indicated zero when the landmarks were located on the three-dimensional symmetric position. As the asymmetry of landmarks increased, the value of facial asymmetry index increased. For ten anatomical landmarks, the mean value of facial asymmetry index on each landmark was obtained in the normal standard group. Facial asymmetry index was applied to the patients who had undergone orthognathic surgery. Preoperative facial asymmetry and postoperative improvement were evaluated. Results: The reference facial asymmetry index on each landmark in the normal standard group was from 1.77 to 3.38. A polygonal chart was drawn to visualize the degree of asymmetry. In three patients who had undergone orthognathic surgery, it was checked that the method of facial asymmetry index showed the preoperative facial asymmetry and the postoperative improvement well. Conclusions: The current new facial asymmetry index could efficiently quantify the degree of facial asymmetry from 3D-CT. This method could be used as an evaluation standard for facial asymmetry analysis.

Comparison of the condyle-fossa relationship between skeletal class III malocclusion patients with and without asymmetry: a retrospective three-dimensional cone-beam computed tomograpy study

  • Kim, Hyoun Oak;Lee, Won;Kook, Yoon-Ah;Kim, Yoonji
    • The korean journal of orthodontics
    • /
    • v.43 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • Objective: This study investigated whether temporomandibular joint (TMJ) condyle-fossa relationships are bilaterally symmetric in class III malocclusion patients with and without asymmetry and compared to those with normal occlusion. The hypothesis was a difference in condyle-fossa relationships exists in asymmetric patients. Methods: Group 1 comprised 40 Korean normal occlusion subjects. Groups 2 and 3 comprised patients diagnosed with skeletal class III malocclusion, who were grouped according to the presence of mandibular asymmetry: Group 2 included symmetric mandibles, while group 3 included asymmetric mandibles. Pretreatment three-dimensional cone-beam computed tomography (3D CBCT) images were obtained. Right- and left-sided TMJ spaces in groups 1 and 2 or deviated and non-deviated sides in group 3 were evaluated, and the axial condylar angle was compared. Results: The TMJ spaces demonstrated no significant bilateral differences in any group. Only group 3 had slightly narrower superior spaces (p < 0.001). The axial condylar angles between group 1 and 2 were not significant. However, group 3 showed a statistically significant bilateral difference (p < 0.001); toward the deviated side, the axial condylar angle was steeper. Conclusions: Even in the asymmetric group, the TMJ spaces were similar between deviated and non-deviated sides, indicating a bilateral condyle-fossa relationship in patients with asymmetry that may be as symmetrical as that in patients with symmetry. However, the axial condylar angle had bilateral differences only in asymmetric groups. The mean TMJ space value and the bilateral difference may be used for evaluating condyle-fossa relationships with CBCT.