• Title/Summary/Keyword: Three-dimensional circulation

Search Result 142, Processing Time 0.022 seconds

Development of a three dimensional circulation model based on fractional step method

  • Abualtayef, Mazen;Kuroiwa, Masamitsu;Sief, Ahmed Khaled;Matsubara, Yuhei;Aly, Ahmed M.;Sayed, Ahmed A.;Sambe, Alioune Nar
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.14-23
    • /
    • 2010
  • A numerical model was developed for simulating a three-dimensional multilayer hydrodynamic and thermodynamic model in domains with irregular bottom topography. The model was designed for examining the interactions between flow and topography. The model was based on the three-dimensional Navier-Stokes equations and was solved using the fractional step method, which combines the finite difference method in the horizontal plane and the finite element method in the vertical plane. The numerical techniques were described and the model test and application were presented. For the model application to the northern part of Ariake Sea, the hydrodynamic and thermodynamic results were predicted. The numerically predicted amplitudes and phase angles were well consistent with the field observations.

Numerical Simulation of Dispersion of a Vast Point Source in Coastal Area using the Local Wind Model (국지풍모델을 이용한 연안지역 거대 점오염원의 이류확산 수치모의)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.511-522
    • /
    • 1998
  • The two-stage numerical model was used to study the relation between three-dimensional local wind seal area for Korean peninsula. The first stave is three dimensional time-dependent local wind model which elves the wind field and vertical diffusion coefncient. The second stage is advection/duusion model which uses the results of the first stage as input data. First, wand fields on Korean peninsula for none synoptic scale wand showed typical land and sea breeze circulation, and the emitted particles were transported by sea breeze for daytime, emissions return to sea by land breeze for nighttime.

  • PDF

Reduction in Seismic Response of URANUS Liquid Metal Reactor by Using Three-Dimensional Seismic Isolator (3차원 면진장치를 이용한 URANUS 액체금속로의 지진응답감소)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Ryu, Kang-Mook;Hwang, Il Soon;Yoo, Bong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • URANUS (Ubiquitous, Robust, Accident-forgiving, Non-proliferating, Ultra-lasting and Sustainer) has been developed with 35MWe (100MWth) operating without primary coolant pump, capitalizing on natural circulation capability of lead-bismuth eutectic (LBE) for long-life small and robust power units. To ensure the structural integrity, the large safety margin against Safe Shutdown Earthquake, 0.3g, and furthermore the cost effectiveness for URANUS, three-dimensional seismic base isolation design has been developed. The analytical model has been developed and seismic time history analyses have been carried out. The advantage for using three-dimensional seismic base isolation for URANUS has been discussed.

A Three-Dimensional Numerical Model of Circulation and Heat Transport in Coastal Region (연안 해수유동 및 온배수 확산에 관한 3차원 수치모형)

  • 정태성;이길성
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.245-259
    • /
    • 1994
  • This paper is concerned with the development of a three-dimensional numerical model for coastal circulation and heat transport with improved prediction ability. The model uses fully nonlinear, time-dependent three-dimensional, $\sigma$-transformed equations of motion and equation of heat transport The model was verified with experimental data for wind-driven current in a one-dimensional channel and thermal jets flowing into stagnant waters and applied for unsteady flow induced by tide and thermal jets in coastal waters around Kori nuclear power plant. The model results were in good agreements with experimental data sets for wind-driven current and thermal jet, and field observed data sets in coastal waters. This study has shown that the $\kappa$-$\varepsilon$ turbulence model is applicable to various coastal conditions without any modification of turbulence constants.

  • PDF

Mathematical Model for 3-Dimensional Circulation in Surf Zone (쇄파대 3차원 흐름에 대한 수학적 모형)

  • Lee, Jung-Lyul;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 1993
  • An amended form of radiation stress is presented in the present model and the existence of the surface advection terms is verified through comparisons with wave energy equation. The model yields circulation patterns in both cross-shore and longshore directions on the plane beach slope. Comparison with laboratory experiments showed good agreements. Finally, a quasi-three dimensional model suitable for the entire nearshore zone is developed by linking the depth-integrated properties with vertical profiles.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

Three-Dimensional Mixing Characteristics in Seomjin River Estuary (섬진강 하구역의 3차원 혼합특성 연구)

  • Kim, Jong-Kyu;Kwak, Gyeong-Il;Jeong, Jeong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.164-174
    • /
    • 2008
  • In this study we try to identify the three-dimensional mixing characteristics of Seomjin River discharges in Seomjin River Estuary and Gwangyang Bay using a seasonal field observation (CTD) during spring tide and a three-dimensional numerical model with EFDC (Environmental Fluid Dynamics Code). The tidal elevation conditions of the four main tidal harmonic constituents on the open boundary and river discharges and thermal effluents at the specific boundary are considered. The calculated harmonic constants of tide and tidal current agreed well with those of observations at two stations for tide and two stations for tidal current. The model successfully reproduced well known the estuarine circulation in Seomjin River Estuary where tide and river discharges are dominant forcings. In the winter mean discharges case, tidal currents move Seomjin River discharges in Seomjin River mouth and in the summer mean discharges case, river flows move Seomjin River discharges near ae Seomjin River Estuary. A three-dimensional mixing characteristics of Seomjin River Estuary show well a three-dimensional estuarine circulation and thermal effluents effect to the seasonal variation of river discharges.

  • PDF