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Mathematical Model for 3-Dimesional Circulation in Surf Zone
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Abstract[1An amended form of radiation stress is presented in the present model and the existence
of the surface advection terms is verified through comparisons with wave energy equation. The model
yields circulation patterns in both cross-shore and longshore directions on the plane beach slope.
Comparison with laboratory experiments showed good agreements. Finally, a quasi-three dimensional
model suitable for the entire nearshore zone is developed by linking the depth-integrated properties
with vertical profiles.
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1. INTRODUCTION

A prominent feature in the nearshore zone is the
wave-induced current circulation. It is commonly
accepted that the primary driving force is the wave-
induced radiation stress first introduced by Longuet-
Higgins and Stewart (1961). Modelling this circula-
tion has since advanced considerably from the ear-
lier development by Noda et al. (1974) and Ebersole
and Dalrymple (1979). Both of these earlier models
were driven by a wave refraction model with no
current feedback. In recent years, Yoo and O'Con-
nor (1986b) developed a coupled wave-induced cir-
culation model based upon what could be classified
as a hyperbolic type wave equation; Yan (1987) and
Winer (1988) developed their interaction models ba-
sed up on parabolic approximation of the wave
equation. All these models employed the depth-ave-
raged formulations which have three major deficie-
ncies 1) the surface effects due to wave-current inte-
raction, which generally is very strong, are being
neglected: 2) the bottom friction is expressed in te-

rms of the mean velocity which makes the model
unrealistic in areas where the current profile is stro-
ngly three dimensional but the mean current could
be small such as in the surf zone and 3) the conve-
ctive acceleration terms are also depth-averaged
which has the same problem as (2). Recently, de
Vriend and Stive (1987) improved the nearshore cir-
culation model by employing a quasi-three dimen-
sional technique. This technique is very attractive
to accomodate the surf zone in which the depth-
averaged model is no longer valid but the full three-
dimensional modelling is currently not attainable.
In this paper, this approach of quasi-three dimen-
sional modelling is adopted for developing a circu-
lation model in nearshore zone.

In Section 2, the fundamental conservation equa-
tions of mass and momentum time-averaged over
turbulent scale are presented. In Section 3, the de-
pth-integrated formulations serving as the basic
equations for a quasi-three dimensional circulation
model are derived. An amended form of radiation
stress is presented and the existence of the surface
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advection terms is verified through comparisons
with wave energy equation. Section 4 develops a
new model prescribing turbulence-induced vertical
current distributions in surf zone. This model emp-
loying the surface current boundary conditions gi-
ven in Lee (1993) yields circulation patterns in both
cross-shore and longshore directions. Finally, in Se-
ction 5, a quasi-three dimensional model suitable
for the entire nearshore zone is developed by lin-
king the depth-integrated properties with vertical
profiles.

2. TURBULENCE-AVERAGED
GOVERNING EQUATIONS

The strong presence of turbulence is a prominent
feature in surf zone. Consequently, the fundamental
equations governing the fluid motion should also
include the turbulent effects. This is usually accom-
plished with the introduction of Reynolds stresses
by time averaging over the turbulent fluctuations.
Accordingly, the
equations are presented here: the continuity equa-
tion for incompressible fluid,

turbulence-averaged governing
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the horizontal momentum equations,
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and the vertical momentum equation,
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where the superscript~is used to denote ensemble-
averaging and < includes the Reynolds stresses due
to turbulence flow.

3. HORIZONTAL CIRCULATION
MODEL

The governing equations for the horizontal circu-
lation model are obtained after depth integration
and wave-averaging. In order to protect from losing
the Eulerian mean quantities at the mean water
level, the depth integration is taken prior to wave-
averaging them.

3.1 Depth-Integrated and TimerAveraged Equation
of Mass

Integrating Eq. (1) over depth and employing the
kinematic boundary conditions on the free surface
and on the bottom, hereafter omitting the tildes,
we get

o
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Now let the turbulence-averaged velocity vector, Uy,
v, w), be decomposed into mean velocity and wave
fluctuation, which will be distinguished by the subs-
cript ¢ and w, respectively; 'thus,

U=U.+U, (6)
=Nt )

where U, is the residual wave fluctuation which
can be removed through the process of wave-avera-
ging, and U, is the time-averaged value of velocity
which can be measured by a particle moving with
the residual wave fluctuation. The velocity of a par-
ticular water particle with a mean position of (xi,
z1) is Ux+{ z+E&), where { and € are locations
of the trajectory of the particle moving with the
residual wave fluctuation. The trajectory is supposed
to be closed. Then, we obtain the wave-averaged
value of velocity, U, as

U;(X],Z]): %ﬂ U(X] + C, Z| +§)dt

Substituting Eqs. (6-7) and taking the wave-average
after expanding in a Taylor series at n=n.. Eq. (5)
can be simplified as

one
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The wave components are given by linear progre-
ssive wave theory as follow:
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where the x and y components of mass flux are
defined as
_ E'ks

E'k
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po po

(10)

E' is defined as pgH’/8. The 4th and 5th terms are
considered the mass transport above the mean wa-
ter level in the mass conservation.

3.2 Depth-Integrated and Time-Averaged Equations
of Momentum

Assuming that no horizontal viscous stress exist,
Eq. (2) is integrated over depth to yield
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where Tpy=Txl, is a Wind stress in the x direction
and Ts=T.!_» is the bottom friction. Substituting
U defined in Eq. (6), the time-averaged quantities
is also obtained by expanding n in Taylor series
at the mean water level, n,
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where the pressure at the free surface was assumed

to be zero. The pressure term requires some special
attention as it is composed of a time averaged pres-
sure due to mean flow and a time averaged pressure
due to the wave motion. The time averaged mean
flow pressure can be obtained from the vertical mo-
mentum equation after some mathematical manipu-
lations,

PE)=—pwi(z)+ pg(nc—2) (13)

then, the total pressure is given as

p=pH+p.=—pwid)+pg.—2)tpgnK, ) (14

where K, is the pressure response factor given by
linear wave theory,

_ coshk(h+2z)

" cosh k(h+n.) (15)

Substituting Eq. (14), finally, the depth-integrated

and time-averaged momentum equation in the x
direction is obtained;
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When the following definitions representing the ex-
cess momentum fluxes are introduced
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Equation (16) can be expressed as
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The momentum equation in the y direction can
be similarly obtained,
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For the case of linear progressive wave and mild
slope, the radiation stress terms can be expressed
in terms of wave charateristics as
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where n=Cg/C and u, and v, are the time-averaged
current velocity at mean water level.

3.3 Roles of New Surface Advection Terms in Ra-
diation Stress

The radiation stresses as derived above differ
from classic definitions given by Longuet-Higgins
and Stewart (1961) with the additional terms arising
from the avection near the surface. These new terms
have a number of important roles as will be elabo-
rated here.

The first is related to the physical role. It is gene-
rally accepted that longshore current inside the surf
zone is induced by excess radiation stresses. Accor-
ding to the classic definition, the calculated long-
shore current distribution within the surf zone is
triangular increasing linearly with distance from the

shoreline up to the breaking point and then ending
there abruptly (Longuet-Higgins, 1970). In order to
smooth the distribution to more realistically repre-
sent the actual observation an artifical lateral mi-
xing term is introduced. Unrealistically large mixing
coefficients are often required fit the actual data
(Bowen, 1969; Svendsen and Putrevu, 1990). The
new definition completely eliminates the need of
the mixing term and yields good agreement with
the observations as shown in Lee (1993). The se-
cond and more fundamental importance is the fact
that the new definition gives the correct form of
wave energy transformation in the presence of cur-
rent.

Consider waves approaching a straight coastline
at an angle, and being absorbed by breaking in
the surf zone. Since energy £ and momentum M
are conserved, the following relation is exact regard-
less of the theory cf waves.

E dM
dE

=C'— 26
dt “dt (26)

where C,’ is the y-directional velocity of a fluid
body which is C,/sinf. Here C, is defined by w/k
and yet C has been defined by o/k. dE/dt and dM/dt
are clearly equal to gF./gx and 9S,/ax, respectively.
The x-axis is directed onshore, and y-axis along-
shore in accordance with a right-handed system.
Hence,

oF, G, 3Se
o sind  gx en

Substituting Eq. (24), we have

oF _ G i( i s A3 )
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The energy flux was expressed by
W,
F,=(u,+ Cgcos®)—E 29)
o
then Eq. (28) gives the relation
—gx—(cose 2 E)=0 (30)

which results in the expression of the longshore
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current as follows.

cose—vcf— H*=Const 3D
C
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This expression is consistent with that from the surf
zone model given in Lee {1993). Therefore, this re-
lation between energy and momentum conserva-
tions demonstrates the validity of the surf zone mo-
del. In addition, it also presents that the surface
advection terms have to be included in the radia-
tion stresses of second order if currents exist.

4. VERTICAL CIRCULATION MODEL

The local imbalance between the depth-varying
momentum flux and the depth uniform set-up force
is known to be the driving force for causing vertical
circulation. This driving mechanism was originally
postulated by Nielsen and Sorensen (1970) and was
first analytically treated in a thesis by Dally (1980).
Svendsen (1984) developed a theoretical model
using the first order approximation technique in
describing breaking waves, and Hansen and Svend-
sen (1984) further incorperated the effect of the bot-
tom boundary layer in the solution. More recently,
several other ideas have been suggested. Okayasu
et al. (1988) estimated the undertow profiles based
on the assumed mean shear stress and eddy visco-
sity, and Yamashit a e al. (1990) developed a nu-
merical model which consists of surface and inner
layers. Here, the theoretical undertow and longshore
current models are carried further over straight pa-
rallel contours as described below.

4.1 Theoretical Undertow Model

The vertical circulation model of a steady,
two-dimensional motion in the x-z plane begins
with the turbulent-averaged equations of momentum
conservation and the wave-and turbulent-averaged
equation of mass conservation. Assuming a steady,
two-dimensional motion in the x-z plane, Eq. (9)
becomes,

]
< Q+M)=0
pw @ +M) (33

where

Q= f " uds G4

The depth-integrated discharge of x component, Q,,
can be expressed by the mass flux since the depth-
integrated total mass flux has to be zero in the
steady. That is,

0.=—M, (35)

Integrating Eq. (2) up to the free surface and apply-
ing a free surface kinematic boundary condition
with help of Leibnitz’s rule yields
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where any horizontal viscous stresses are assumed
not to exist and the vertical shear stress is assumed
to be expressed in the form

T puot 37)
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where v, is total kinematic viscosity, which is com-
posed of both eddy and molecular viscosities. The
shear stress at surface, t(n), is assumed only due
to wind stress ty. Separating the velocity into the
current and wave components and taking time-ave-
rage, Eq. (36) becomes
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The effect of squared mean current was assumed
to be small enough compared to the rest. In shallow
water, the first term becomes

9 J'(uw (( +h; :X[OSZG—I;—Z] (39)

and the second term on the right hand side reduces
to,
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The first term on the right hand side can be deter-
mined by the depth-integrated equation of momen-
um, Eq. (19), under the following assumptions; 1)
the flow is in steady state, and 2) the effect of squa-
red mean current are negligible, Eq. (39), then, be-
comes
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Substituting Egs. (39-41) into Eq. (38) and nondime-
nsionalizing by z'=(n.~z)/(n.+A) results in,
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According to the above equation, we can estimate
the shear stress at the mean water level,
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Integrating Eq. (42) with respect to z' after replacing
v; by an eddy viscosity & assumed to be constant,
we get
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where the vertical eddy viscosity, &., will be estima-
ted in Section 43. Substituting Eq. (45) into Eq.
(34), the Tz term appeared in Eq. (46) can be
expressed by
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where u=Q./(n.+h). The tg denotes the shear
stress due to turbulence. A brief discussion on the
bottom velocity is given below. Since a bottom st-
reaming velocity exists in a thin bottom layer, the
bottom velocity contains two components,

UB = UB,tb + Ustrm (5 O)

where the first component represents the bottom
velocity due to the wave breaking induced turbulent
flow and the second term is the stream velocity
in the oscillatory boundary. These two components
generally are opposite to each other. The bottom
shear stress is also assumed to consist of two terms,

= Ta+Tan (51)

This decomposition, which simplifies the formula-
tion of the vertical circulation model considerably,
is proven to be appropriate for determining the
wave-induced currents as long as the bottom boun-
dary layer remains thin and is not much disturbed
by the turbulent motions originating from the sur-
face wave breaking (Dong and Anastasiou, 1991).
The first component representing shear stress indu-
ced by eddy viscosity and is given by

e _ _ _ & oUs

p nth oz
where U, is a vectorial expression of the turbulent-
induced currents as given in Eq. (45). The second
term is the shear stress due to bottom drag given

by,

W (52

;bf: pE | Uorp | (Uﬂlh + U\’lrm) (53)

under the assumption of weak current. The vertical
eddy viscosity will be estimated in Section 4.3.

4.2 Longshore Current Model
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Integrating Eq. (3) as done in the undertow model
yields
0 ["sudz—wvl.= Ly~ l2)] (54)
- 7 —vwl|,=— —Tylz
ax /e p VT
where the assumption has been made that the late-
ral mixing is negligible under small current. The
shear stress is assumed to be in the form of
ov
=pvt— 5
v (55)
Again, the shear stress at surface, t(n), is assumed
to be due to wind stress py only. Separating the
velocity into the current and wave components and
taking time-average, Eq. (54) becomes
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The second and third terms become zero as descri-
bed in Section 3.3. Assuming the effect of squared
mean current is small enough, Eq. (56) is reduced
to
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In shallow water, the LHS becomes
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by linear wave theory. Substituting Eq. (58) into Eq.
(57) and nondimensionalizing by 2’'=(n.—z)/(n.+h)
gives the following,
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The shear stress at the mean water level can then
be obtained,

— Vl a"(
Ak o T p (60)

as well as the shear stress at the bottom,
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Integrating Eq. (59) over z' after replacing v, by eddy
viscosity, €. assumed to be constant, we get

v{2)=Cnz'* +Co' +Cps (62)
where
T](+h 'C_Wy Thywh
j= ey W b
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Co= — 2 T 9
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The depth-averaged mean longshore current is then
obtained by
Cy , G

§=vA+3y—‘+2i (66)

4.3 Estimation of Eddy Viscosity

The vertical eddy viscosity for both cross-shore
and longshore components can estimated here by
using the same approach proposed by Peregrine
and Svendsen (1978). Their appoach draws upon
the similarities between breaking zone and turbulent
wake flows. The fomula for eddy viscosity assumes
the followin form (de Vriend and Stive, 1987)

Szzlvz'uurb| (n(+h) (67)

where N, is an unknown coefficient.

In this study, a coefficient, N,, for both cross-shore
and longshore components is estimated by assu-
ming that 1) the depth-averaged longshore current
is proportional to the surface longshore current, na-
mely,

V=

and 2) the turbulent shear stress can be expressed
in terms of the depth-averaged longshore current
so that;

Tayb
_yj—_:Fw|uorbl’sz

where vy is a constant coefficient. From Eq. (66)
we have

nt+h
6¢,

(68)

YVs= Vs
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which yields

TBy.rh 682
— =1 YW 69
ot h( YW, (69)
If the turbulent-induced shear stress dominanates
the bottom friction, the folllowing relation can be
obtained:
6¢, 1 sinf

1—yy,=—
T]c+h( v e

D (70)

where D is the local rate of dissipation. Substituting
the expression of longshore current at the surface
level given in Lee (1993) into Eq. (70), we obtain
the expression of eddy viscosity,

& _ D
nth  6p(1—7)BLCABCgr—Cg)

where the local rate of dissipation, D, and the abso-
lute phase speed, C,, are given by

7n

D= —V'[BCgb% 2| c=7

Based on the concept described in the surf zone
model of Lee (1993), Eq. (71) can be simplified
as

& _ _ 1 v-(KH/k)
nth 24(1—-v)B. (1—Cg/(BCg))

Therefore, the coefficient, N,, in Eq. (67) becomes

! Uorp | (72)

B 1 V- (KH/k)
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N.= (73)

4.4 Theoretical Solutions

In this subsection, theoretical solutions for the
vertical velocity distributions are presented in surf
zone of a plane beach. Wind stress effect is omitted
in the solutions.

4.4.1 Undertow Model

According to Eq. (72), Eqs. (46-48) are rewritten
here as '

_ 3 n+h
Ca=3u—u)=5 “—&—P (74)
nt+h
Co=2X""p 75
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where
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- _ g CosbH’
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where m is a beach slope, P and u, are based on
the concept described in the surf zone model of
Lee (1993), and the wave angle is assumed to be
nearly normal in order to approximate P. The velo-
city profile can then be calculated by Eq. (45). Four
parameters are to be designated; they are, y: the
ratio of mean current to surface current; B: the dis-
sipation coefficient; Bo: the onshore current magni-
tude coefficient; and B;: the longshore current mag-
nitude coeffcient.

Figure 1 shows the comparisions of the computed
vertical profiles of the cross-shore current with those

-measured by Hansen and Svendsen (1984). The test

conditions were: slope=1:34.25; H,=0.12m and T=
1 sec. The parameters used in the computations
are: B=0.17; Bp=007; B.=50 and y=0982. The
limiting wave height at breaking point is determined
by the Miche’s criterion with k=0.78. Fig. 2 plots
the profile changes across the untire surf zone using
the same paramters as given above. In order to exa-
mine the effect of the advection term (the second
term) given in Eq. (46), the results when the term
is neglected are also represented as dotted lines in
Figure 3. The effect seems to show the significant
deviation from the measurements as it is close to

Cross—shore current

[

DEPTH

S.L. offshore -> B.P.

Fig. 1. Vertical profiles of cross-shore current.
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Fig. 2. Comparison with experiments presented by Hansen and Svendsen (1984),

the shoreline under the same input condition. Ho-
wever, the difference also seems to show the overall
agreement with the experiments by small reduction
of the y value as shown in Fig 3.

4.4.2. Longshore Current Model

According to Eq. (69), the coefficients in the long-
shore current model given in Egs. (63-65) are rewrit-
ten here as

Cn==3(1—vp 78)
C,=0 (9
Cv} =V (80)

where v,=f;sinf(BCg,—Cg) as given in Lee (1993).
Fig. 4 shows the comparasions between computed

profiles and the laboratory data measured by Visser
(1991). The test conditions were: slope=1:10, H,=9.6
cm, T=1 sec and 0,=164°. %(give wave height, le-
ngth and bottom slope also). The values of parame-
ters are as follows; B=02, B, =50, and y=096. It
is seen that y plays an important role. A maximum
value 1 results in a uniform longshore current pro-
file whereas a limiting minimum value 2/3 results
in a no-slip bottom velocity. From the comparisons
with experimental data, a value near 095 is sugges-
ted. Fig. 5 plots the longshore current profile varia-
tions across the surfzone.

Fig. 6 illustrates the three-dimensional current
profiles inside the surf zone using the same condi-
tions as Figure 3 with the exception that the input
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Fig. 3. Effect of the advection term in the undertow model.
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Fig. 4. Vertical profiles of longshore current.

wave is oblique at 10° in deep water clockwise to
the shoreline normal. The three-dimensional current
forms a clockwise spiral from top to bottom.
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4.5 Model Adoption for General Three-Dimensional
Topography

The theoretical models so far developed are for
parallel contours. For irregular bathymetries, boun-
dary conditions the equation is required to get the
surface velocity as the surface boundary condition.
Since solving another equation might be ineffective
for modelling, the bottom shear stress in terms of
depth-averaged current is considered instead of the
surface velocity. For the prediction of a longshore
current this alternative way gives the exactly same
result. For that of the undertow, however, this will
give the different result The bottom shear stress
suggested by Longuet-Higgins (1970) is nowmodified
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g. 6. Combined three-dimensional profiles.

for both cross-shore and longshore directions by

Ta= PFolttors| YO

@81

where F, can be estimated in terms of N, introdu-

ced in Section 4.3,

F=N—Y—
1—-y

and in terms of wave characteristics,

po B VKHA)
" 4B (B—Cg/Cg)

When the bottom shear stress given in Eq. (49) is
applied as a boundary condition instead of the sur-
face velocity in the undertow model, three coefficie-
nts of the undertow model, C, C, and C, are
written by

(82

AR —
Co=—2"2pr o) ®3)
2e.
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Co="ttp (34)
€
= Cxl CxZ
SR 85
C;} u 3 2 ( )

Cross—shore current

DEPTH

S.L. offshore -> B.P.

Fig. 7. Vertical profiles of cross-shore current by using bo-
ttom shear stress.
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The result is shown in Figs. 7-8 for the same
experimental conditions as used by Hansen ans
Svendsen (1984) given in Section 34. The ‘SB.C.
indicates the full theory obtained by the surface
boundary condition, and the ‘BB.C.’ indicates the
approximate theory obtained by the bottom shear
stress with neglecting the advection term. The full
theory was obtained by y=0982, the approximate
theory by y=0978. The comparison with experime-
nts is still in agreement. Therefore, instead of the
boundary condition given by surface currents, the
bottom shear stress is used in the practical model
for the complicated bathymetry, and the advection
terms are omitted.
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Fig. 8. Comparison with experiments presented by Hansen and Svendsen (1984).
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S. QUASI-3D MODEL

The depth-integrated horizontal model is now co-
mbined with the vertical theoretical model to a
quasi-3D model. This quasi-3D model looks promi-
sing since it provides three-dimensional information
at almost the same cost of a two-dimensional hori-
zontal model although it produces the relatively si-
mple variation of vertical profile.

5.1 Modification of 2D Depth-Integrated Equa-
tions

Both from the theoretical solution in simple cases
as well as laboratory measurements, velocity varia-
tion with respect to depth may be approximated
as the function of parabola of 2nd order.

U= Cxlz'2 + CxZZ’ + Cx3 (86)
Vc:CylZ’2+ Cyzz'+Cy3 (87)

where C;, C> and C; will be determined in the next
subsection, and expressed in terms of Q, H, A+,
and ;y Substituting Eqs. (86) and (87) into the
convective acceleration terms yields

4TIc _ @

J’ vz —[ (h+n) +T"‘}(h+“") @)
ne _ Qny

f Ahu‘v‘dz_[ (h+n) +T"y](h+”“) ®9)
N¢ _ Qf,

=[P T %0)

where

0.=]" ude oD

0= " vtz 92)
_; 4Cgl _C_(\ZS C\IC\'Z

T-“'“[ 5 T2 e ] ©3)
_ _ 4Cxlel CxZCvZ L CxleZ L CxZCvl

e e AN TER

(94)

_[4C | Gy GG

TW"[ 45 + 12 * y6 ] %)

Substituting into Eq. (19) leads to the following x-
directional modified momentum equation:

@+§[Q‘—Z-+(h+nc)rﬂ]+ ;;} L0,

ot h+n. h+n,
1 98« , 1 3S
FhHn Ty |+ — 2+ = = o,
xy] b x o &h+ne)
O T +£ =0
x p P (96)

The modified momentum equation of y direction
from Eq. (20)

99 d 0.0, ar o’
" +Ex—[———h+m+(h+np)Tyx]+

ayLh+n
1 oSy 1 95y
AT, |+ — 222 L By
(n!]p_ax ST tghm)
e T g Iy g o7)
¥ o P

As noted below, the bottom friction consists of tur-
bulent shear stress and bottom frictions due to vis-
cous and streaming flows, which can be expressed
as

T8 =Flt10rs) U+ F.lttors) (U + Uy (98)

where the bottom velocity is determined by Eqgs.
(86) and (87) according to the coefficients obtained
in the next subsection.

The continuity equation results in the same equa-
tion as before.

o , ¢ 0
L4 +M)+ +M,)=0
O MY O M) ©9)
5.2 Estimation of Integral Coefficients for Vertical
Velocity Profile
Eq. (2) is elaborated to obtain the time-averaged
equation,

2w+ &2 +-2 f;ﬂudz]

anc Thx auc
=—gn—2 L+ 2 —y,
gn—2) > 0 =

I,

The shear stress enforced at surface was assumed
to be only wave-and wind-induced, and the effect
of advection terms was neglected. Substituting gm.
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/ax given in Eq. (19), the following nondimensional
form can be obtained:

Vi o |z,:z,{£ifz _ T T ]

ntho 6 p p
g oH ™
____—+_
62 T (100)

We replace v, by a constant eddy viscosity, &, assu-
ming that the turbulent motion originating from the
surface wave breaking is uniform over water depth.
Integrating with respect to z’' yiélds

uc(zl): Cxlz'2+ C?' +Ca (101)

where the coefficients are approximated as

nf+h g 6HQ TPVX TBx1b

i Cri s e

=" {16 el } (102)
nt+hf g oH'  tws

Co=—2T24 & 00 | T

S w
Q\' Cxl CxZ

Co= -

"tk 3 2 (104)

Eq. (3) is also elaborated to obtain the y$-directional
time-averaged equation of integrated form,

Pl i oy

dNe +M —v, oVe
leig p 0z

:_g(nf—z) ,z

When the gradient of mean water level given in
Eq. (20) is substituted, the following simple form
can be obtained in terms of the bottom shear stress
the same for x direction:

Ve /{iﬂ_w +2]

Fi

Cneth o 16 oy p P
- f—é %’z + r—:’ \ (105)
Integrating with respect to z yields
v(@2)=Cuz*+Cpz’ +Cps (106)

where the coefficients are expressed in terms of
wave characteristics and current quantities resulted
from the depth-integrated wave and circulation mo-
dels;

Co= _n_ct_h_{gﬂ* T T ] 107)
2e, *16 oz p p
Cp= _Dﬁﬂ{_ﬁﬂ _|__rﬂ} (108)
& 16 oy p
Qy Cyl CyZ
a= — 109
G +h 3 2 (109

6. CONCLUSION

The surface advective terms were added to the
conventional radiation stress by taking Taylor series
expansion at the mean water level. The resulting
radiation stress was proven to be consistent with
the wave energy flux in the wave-current coexisting
field.

The surface properties obtained from the surf
zone model enabled us to develop the theory for
the vertical circulation model which had suffered
obscurity of boundary conditions. In addition, the
friction coefficient and eddy viscosity applicable to
the turbulent flow in a surf zone have been estima-
ted in terms of energy dissipation. The developed
model yielded the theoretical results comparable
with laboratory experiments.

Based on the examination of the theoretical mo-
del for vertical profiles of currents in steady state,
a quasi-three dimensional circulation model suitable
for the entire nearshore zone is developed by lin-
king the depth-integrated properties with the vertical
profiles.
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