• Title/Summary/Keyword: Three-dimensional Virtual CAD

Search Result 31, Processing Time 0.023 seconds

A Real-Time Graphic Driving Simulator Using Virtual Reality Technique (가상현실을 이용한 실시간 차량 그래픽 주행 시뮬레이터)

  • Jang, Jae-Won;Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.80-89
    • /
    • 2000
  • Driving simulators provide engineers with a power tool in the development and modification stages of vehicle models. One of the most important factors to realistic simulations is the fidelity obtained by a motion bed and a real-time visual image generation algorithm. Virtual reality technology has been widely used to enhance the fidelity of vehicle simulators. This paper develops the virtual environment for such visual system as head-mounted display for a vehicle driving simulator. Virtual vehicle and environment models are constructed using the object-oriented analysis and design approach. Based on the object model, a three-dimensional graphic model is completed with CAD tools such as Rhino and Pro/ENGINEER. For real-time image generation, the optimized IRIS Performer 3D graphics library is embedded with the multi-thread methodology. The developed software for a virtual driving simulator offers an effective interface to virtual reality devices.

  • PDF

Total joint reconstruction using computer-assisted surgery with stock prostheses for a patient with bilateral TMJ ankylosis

  • Rhee, Seung-Hyun;Baek, Seung-Hak;Park, Sang-Hun;Kim, Jong-Cheol;Jeong, Chun-Gi;Choi, Jin-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.41.1-41.6
    • /
    • 2019
  • Backgrounds: The purpose of this study is to discuss the total joint reconstruction surgery for a patient with recurrent ankylosis in bilateral temporomandibular joints (TMJs) using three-dimensional (3D) virtual surgical planning, computer-aided manufacturing (CAD/CAM)-fabricated surgical guides, and stock TMJ prostheses. Case presentation: A 66-year-old female patient, who had a history of multiple TMJ surgeries, complained of severe difficulty in eating and trismus. The 3D virtual surgery was performed with a virtual surgery software (FACEGIDE, MegaGen implant, Daegu, South Korea). After confirmation of the location of the upper margin for resection of the root of the zygoma and the lower margin for resection of the ankylosed condyle, and the position of the fossa and condyle components of stock TMJ prosthesis (Biomet, Jacksonville, FL, USA), the surgical guides were fabricated with CAD/CAM technology. Under general anesthesia, osteotomy and placement of the stock TMJ prosthesis (Biomet) were carried out according to the surgical planning. At 2 months after the operation, the patient was able to open her mouth up to 30 mm without complication. Conclusion: For a patient who has recurrent ankylosis in bilateral TMJs, total joint reconstruction surgery using 3D virtual surgical planning, CAD/CAM-fabricated surgical guides, and stock TMJ prostheses may be an effective surgical treatment option.

Application of 3D Simulation Surgery to Orthognathic Aurgery : A Preliminary Case Study

  • Lim, Jung-Hwan;Kim, Hyun-Young;Jung, Young-Soo;Jung, Hwi-Dong
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2014
  • The aim of this report is to evaluate accuracy using3D surgical simulationand digitally printedwafer in orthognathic surgery. 22-year-old female was diagnosed with mandibular prognathism and apertognathia based on 3D diagnosis using CT. Digital dentition images were taken by laser scanning from dental cast, and each STL images were integrated into one virtual skull using simulation software. Digitalized intermediate wafer was manufactured using CAD/CAM software and 3D printer, and used to move maxillary segment in real patient. Constructed virtual skull from 1 month postoperative CT scan was superimposedinto simulated virtual model to reveal accuracy. Almost maxillo-mandibular landmarks were placed in simulated position within 1 mm differences except right coronoid process. Thus 3D diagnosis, surgical simulation, and digitalized wafer could be useful method to orthognathic surgery in terms of accuracy.

Development of Simulation Software and Design of Measuring Modules for Automatic Measuring System of Moulds (금형의 자동 계측시스템을 위한 측정 모듈설계 및 시뮬레이션 소프트웨어 개발)

  • 김옥삼;구본권
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.71-77
    • /
    • 2001
  • On-machine measuring system of Numerically Control(NC) machines permit computer control of basic material cutting processes of moulds. A part of mould designed within a CAD/CAM system can be manufactured by generation of tool paths by the measuring systems. Since the three-dimensional geometry by AutoCAD of the part is contained in the data base, the manufacturing specialist combined with the appropriate software simulation, can not only create the commands to drive the virtual measuring and standardization of measuring modules but also can check for mistakes by viewing the computer graphics simulation of the tool cutting sequence.

  • PDF

Performance Evaluation and Development of Virtual Reality Bike Simulator (가상현실 바이크 시뮬레이터의 개발과 성능평가)

  • Kim, Jong-Yun;Song, Chul-Gyu;Kim, Nam-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.112-121
    • /
    • 2002
  • This paper describes a new bike system for the postural balance rehabilitation training. Virtual environment and three dimensional graphic model is designed with CAD tools such as 3D Studio Max and World Up. For the real time bike simulation, the optimized WorldToolKit graphic library is embedded with the dynamic geometry generation method, multi-thread method, and portal generation method. In this experiment, 20 normal adults were tested to investigate the influencing factors of balancing posture. We evaluated the system by measuring the parameters such as path deviation, driving velocity, COP(center for pressure), and average weight shift. Also, we investigated the usefulness of visual feedback information by weight shift. The results showed that continuous visual feedback by weight shift was more effective than no visual feedback in the postural balance control It is concluded this system might be applied to clinical use as a new postural balance training system.

Image Based 3D Reconstruction of Texture-less Objects for VR Contents

  • Hafeez, Jahanzeb;Lee, Seunghyun;Kwon, Soonchul;Hamacher, Alaric
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Recent development in virtual and augmented reality increases the demand for content in many different fields. One of the fast ways to create content for VR is 3D modeling of real objects. In this paper we propose a system to reconstruct three-dimensional models of real objects from the set of two-dimensional images under the assumption that the subject does not has distinct features. We explicitly consider an object that is made of one or more surfaces and radiant constant energy isotropically. We design a low cost portable multi camera rig system that is capable of capturing images simultaneously from all cameras. In order to evaluate the performance of the proposed system, comparison is made between 3D model and a CAD model. A simple algorithm is also proposed to acquire original texture or color of the subject. Using best pattern found after the experiments, 3D model of the Pyeongchang Olympic Mascot "Soohorang" is created to use as VR content.

Three-dimensional evaluation of the transfer accuracy of a bracket jig fabricated using computer-aided design and manufacturing to the anterior dentition: An in vitro study

  • Park, Jae-Hyun;Choi, Jin-Young;Kim, Seong-Hun;Kim, Su-Jung;Lee, Kee-Joon;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.51 no.6
    • /
    • pp.375-386
    • /
    • 2021
  • Objective: To evaluate the accuracy of a one-piece bracket jig system fabricated using computer-aided design and manufacturing (CAD/CAM) by employing three-dimensional (3D) digital superimposition. Methods: This in vitro study included 226 anterior teeth selected from 20 patients undergoing orthodontic treatment. Bracket position errors from each of the 40 arches were analyzed quantitatively via 3D digital superimposition (best-fit algorithm) of the virtual bracket and actual bracket after indirect bonding, after accounting for possible variables that may affect accuracy, such as crowding and presence of the resin base. Results: The device could transfer the bracket accurately to the desired position of the patient's dentition within a clinically acceptable range of ± 0.05 mm and 2.0° for linear and angular measurements, respectively. The average linear measurements ranged from 0.029 to 0.101 mm. Among the angular measurements, rotation values showed the least deviation and ranged from 0.396° to 0.623°. Directional bias was pronounced in the vertical direction, and many brackets were bonded toward the occlusal surface. However, no statistical difference was found for the three angular measurement values (torque, angulation, and rotation) in any of the groups classified according to crowding. When the teeth were moderately crowded, the mesio-distal, bucco-lingual, and rotation measurement values were affected by the presence of the resin base. Conclusions: The characteristics of the CAD/CAM one-piece jig system were demonstrated according to the influencing factors, and the transfer accuracy was verified to be within a clinically acceptable level for the indirect bracket bonding of anterior teeth.

Convergence analysis of cusp variation symmetry of the mandibular second premolars using 3-dimensional virtual models - Focusing on college students in Jeollabuk-do (3차원 가상모형을 이용한 하악 제2소구치 교두 변이 대칭성에 대한 융복합적 분석 - 전북지역 일부 대학생을 중심으로)

  • Nam, Shin-Eun
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.317-323
    • /
    • 2022
  • This study aimed to qualitative analyze the cusp variation pattern of the mandibular second premolars using a three-dimensional virtual models, and to analyze the left-right bilateral symmetry with a quantitative analysis of the tooth surface area according to the cusp variation. 127 virtual mandibular second premolars were prepared and individual absolute/relative cusp area, total crown area and groove form were analyzed using RapidForm2004(INUS technology INC, Seoul, Korea). Independent t-test, Kruskal-Wallis test and chi-square were performed. As a result, the groove form showed high bilateral symmetry between the left and right sides. Based on the left side of groove form, the bilateral symmetry was 100.0% for the U pattern, and 73.7% for the H patterned, and 78.9% for the Y pattern(p<.001). The finding could be as a meaningful reference for manufacturing CAD/CAM dental prostheses, and it is expected that further studies will be conducted on more samples including the mandibular second premolar immediately after eruption.

A Study on the Three-dimensional Expression of Fashionable Textiles based on Analyses of 3D Scanning and Textile Properties -Focus on the Work of Iris van Herpen- (패션소재의 입체적 표현에 대한 3D Scanning 및 소재특성 분석 연구 -Iris van Herpen의 작품을 중심으로-)

  • Lee, ReA;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.20 no.2
    • /
    • pp.124-133
    • /
    • 2016
  • Currently the fashion industry is developing to create a novel culture due to the very sensitive and knowledge-oriented advancement of the IT industry. With fast turnover of information, consumers have come to have a more diverse desire for purchasing. Cubical expression techniques, which empathizes formativeness, can be a creative expression method adjusting into the trend of this era. Along with functional aspects of consumers, even in a textile manufacturing sector, new materials are required to meet sensitive and emotional aspects. Consumers' desire for new and creative designs and the development and adoption of new materials are essential to meet their emotions. The IT industry and fashion industry are forced to combine and a 3D apparel CAD system has been developed, enabling virtual clothing to be represented within a computer virtual space. All processes such as design, pattern creation, sewing and simulation are possible in 3D level. Digital clothing can shorten the production process time and is very effective in that it can reduce clothing waste generated during the sample production. This paper reviewed the works of Dutch designer, Iris van Herpen, who has developed formative designs. She tries to build, construct, and sculpt employing diversified materials other than soft textile materials, as shown in her series of fashion shows. The materials include films, 3D printed polymers, stiff and sheer organza, and artificial leather textiles. A few characteristics of her works have been selected in order to prepare patterns exhibiting the traits. The paper further focused on the physical features of the textile materials used to express similar techniques and its various forms were reviewed.

Development of Design Capabilities for Cylinder and Jig Base in a 3-D Jig Design System for Automobile Body Assembly (차체 조립용 3차원 지그 설계 시스템에서의 실린더 및 베이스 설계 프로그램 개발)

  • 조병철;이상헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1475-1478
    • /
    • 2003
  • This paper introduces the development of design capabilities for air cylinders and jig bases in a three-dimensional jig design system for automobile body assembly. We first built the standard part library for these parts, and then developed the dedicated 3D design capabilities based on the Unigraphics system. By using this 3-D jig design system, design can be performed more intuitively, and verification and simulation of design results can be done more easily as the 3-D design result can be used readily for virtual manufacturing simulation.

  • PDF