• Title/Summary/Keyword: Three-dimensional Point Cloud

Search Result 86, Processing Time 0.026 seconds

A Study on Three-Dimensional Model Reconstruction Based on Laser-Vision Technology (레이저 비전 기술을 이용한 물체의 3D 모델 재구성 방법에 관한 연구)

  • Nguyen, Huu Cuong;Lee, Byung Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.633-641
    • /
    • 2015
  • In this study, we proposed a three-dimensional (3D) scanning system based on laser-vision technique and rotary mechanism for automatic 3D model reconstruction. The proposed scanning system consists of a laser projector, a camera, and a turntable. For laser-camera calibration a new and simple method was proposed. 3D point cloud data of the surface of scanned object was fully collected by integrating extracted laser profiles, which were extracted from laser stripe images, corresponding to rotary angles of the rotary mechanism. The obscured laser profile problem was also solved by adding an addition camera at another viewpoint. From collected 3D point cloud data, the 3D model of the scanned object was reconstructed based on facet-representation. The reconstructed 3D models showed effectiveness and the applicability of the proposed 3D scanning system to 3D model-based applications.

A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method (몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구)

  • YI, Chaeyeon;AN, Seung-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.16-41
    • /
    • 2020
  • Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient surface property estimations. Hence, in this paper, the authors proposed Monte Carlo Integration (MCI) to apply spatial probability (SP) in a spatial-sampling framework using a three-dimensional point cloud (3DPC) to keep the optimized spatial distribution and area/volume property of buildings in urban area. Three different decision rule based building identification results were compared : SP threshold, cell size, and 3DPC density. Results shows the identified building area property tend to increase according to the spatial sampling grid area enlargement. Hence, areal building property manipulation in the sampling frameworks by using decision rules is strongly recommended to increase reliability of geospatial modeling and analysis results. Proposed method will support the modeling needs to keep quantitative building properties in both finer and coarser grids.

Matching for Cylinder Shape in Point Cloud Using Random Sample Consensus (Random Sample Consensus를 이용한 포인트 클라우드 실린더 형태 매칭)

  • Jin, YoungHoon
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.562-568
    • /
    • 2016
  • Point cloud data can be expressed in a specific coordinate system of a data set with a large number of points, to represent any form that generally has different characteristics in the three-dimensional coordinate space. This paper is aimed at finding a cylindrical pipe in the point cloud of the three-dimensional coordinate system using RANSAC, which is faster than the conventional Hough Transform method. In this study, the proposed cylindrical pipe is estimated by combining the results of parameters based on two mathematical models. The two kinds of mathematical models include a sphere and line, searching the sphere center point and radius in the cylinder, and detecting the cylinder with straightening of center. This method can match cylindrical pipe with relative accuracy; furthermore, the process is rapid except for normal estimation and segmentation. Quick cylinders matching could benefit from laser scanning and reverse engineering construction sectors that require pipe real-time estimates.

Feature Template-Based Sweeping Shape Reverse Engineering Algorithm using a 3D Point Cloud

  • Kang, Tae Wook;Kim, Ji Eun;Hong, Chang Hee;Hwa, Cho Gun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.680-681
    • /
    • 2015
  • This study develops an algorithm that automatically performs reverse engineering on three-dimensional (3D) sweeping shapes using a user's pre-defined feature templates and 3D point cloud data (PCD) of sweeping shapes. Existing methods extract 3D sweeping shapes by extracting points on a PCD cross section together with the center point in order to perform curve fitting and connect the center points. However, a drawback of existing methods is the difficulty of creating a 3D sweeping shape in which the user's preferred feature center points and parameters are applied. This study extracts shape features from cross-sectional points extracted automatically from the PCD and compared with pre-defined feature templates for similarities, thereby acquiring the most similar template cross-section. Fitting the most similar template cross-section to sweeping shape modeling makes the reverse engineering process automatic.

  • PDF

LiDAR Measurement Analysis in Range Domain

  • Sooyong Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.187-195
    • /
    • 2024
  • Light detection and ranging (LiDAR), a widely used sensor in mobile robots and autonomous vehicles, has its most important function as measuring the range of objects in three-dimensional space and generating point clouds. These point clouds consist of the coordinates of each reflection point and can be used for various tasks, such as obstacle detection and environment recognition. However, several processing steps are required, such as three-dimensional modeling, mesh generation, and rendering. Efficient data processing is crucial because LiDAR provides a large number of real-time measurements with high sampling frequencies. Despite the rapid development of controller computational power, simplifying the computational algorithm is still necessary. This paper presents a method for estimating the presence of curbs, humps, and ground tilt using range measurements from a single horizontal or vertical scan instead of point clouds. These features can be obtained by data segmentation based on linearization. The effectiveness of the proposed algorithm was verified by experiments in various environments.

Point Cloud Registration Algorithm Based on RGB-D Camera for Shooting Volumetric Objects (체적형 객체 촬영을 위한 RGB-D 카메라 기반의 포인트 클라우드 정합 알고리즘)

  • Kim, Kyung-Jin;Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.765-774
    • /
    • 2019
  • In this paper, we propose a point cloud matching algorithm for multiple RGB-D cameras. In general, computer vision is concerned with the problem of precisely estimating camera position. Existing 3D model generation methods require a large number of cameras or expensive 3D cameras. In addition, the conventional method of obtaining the camera external parameters through the two-dimensional image has a large estimation error. In this paper, we propose a method to obtain coordinate transformation parameters with an error within a valid range by using depth image and function optimization method to generate omni-directional three-dimensional model using 8 low-cost RGB-D cameras.

Effective Ray-tracing based Rendering Methods for Point Cloud Data in Mobile Environments (모바일 환경에서 점 구름 데이터에 대한 효과적인 광선 추적 기반 렌더링 기법)

  • Woong Seo;Youngwook Kim;Kiseo Park;Yerin Kim;Insung Ihm
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.93-103
    • /
    • 2023
  • The problem of reconstructing three-dimensional models of people and objects from color and depth images captured by low-cost RGB-D cameras has long been an active research area in computer graphics. Color and depth images captured by low-cost RGB-D cameras are represented as point clouds in three-dimensional space, which correspond to discrete values in a continuous three-dimensional space and require additional surface reconstruction compared to rendering using polygonal models. In this paper, we propose an effective ray-tracing based technique for visualizing point clouds rather than polygonal models. In particular, our method shows the possibility of an effective rendering method even in mobile environment which has limited performance due to processor heat and lack of battery.

Three Dimensional Metrology of Surface Mounted Solder Pastes Using Bounding Box Formed by Histogram of Gradient Vectors of Point Cloud (점군의 기울기벡터 히스토그램에 의해 형성된 구속상자를 이용한 표면실장 솔더페이스트의 3차원 Metrology)

  • 신동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.674-677
    • /
    • 2003
  • This work presents a method of point-to-surface assignment for 3D inspection of solder pastes on PCB. A bounding box enclosing the solder paste tightly on all sides is introduced to avoid incorrect point-to-surface assignment. The shape of bounding box for solder paste brick is variable according to geometry of measured points. The surface geometry of the bounding box is obtained by using five peaks selected from the histogram of normalized gradient vectors for measured points. By using the bounding box enclosing the solder paste. the task of point-to-surface assignment is successfully executed. Subsequently, the geometrical features are obtained via surface fitting.

  • PDF

Bounding volume estimation algorithm for image-based 3D object reconstruction

  • Jang, Tae Young;Hwang, Sung Soo;Kim, Hee-Dong;Kim, Seong Dae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • This paper presents a method for estimating the bounding volume for image-based 3D object reconstruction. The bounding volume of an object is a three-dimensional space where the object is expected to exist, and the size of the bounding volume strongly affects the resolution of the reconstructed geometry. Therefore, the size of a bounding volume should be as small as possible while it encloses an actual object. To this end, the proposed method uses a set of silhouettes of an object and generates a point cloud using a point filter. A bounding volume is then determined as the minimum sphere that encloses the point cloud. The experimental results show that the proposed method generates a bounding volume that encloses an actual object as small as possible.

Case study - Design a cell phone cover by using reverse engineering (사례 연구 - 3차원 역설계를 이용한 휴대폰 보호 커버 설계)

  • Kim, Daejoon;Sung, Jinho;Chung, Sungdae;Chung, Yunchan
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • A 3D scanner scans and captures the shape of a real-world object. The captured shape can be used to construct three-dimensional model for CAD/CAM applications. In this study we have tried to design a cell phone cover by using the 3D scanner and reverse engineering. A 3D scanner is used to capture the shape of a cell phone. The 3D scanner generates a point cloud as the shape information. A three-dimensional CAD model for the cell phone is constructed from the point cloud. A cell phone cover is designed based on the CAD model of the cell phone. To check the integrity of this design process a prototype of the cover is made and assembled with the cell phone.

  • PDF